【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在以原點(diǎn)O為極點(diǎn);x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為

(1)求曲線C2的直角坐標(biāo)方程;

(2)過(guò)原點(diǎn)O且傾斜角為 的射線l與曲線C1,C2分別相交于A,B兩點(diǎn)(A,B異于原點(diǎn)),求的取值范圍

【答案】(1)(2)

【解析】

(1)等式兩邊同時(shí)乘以,由即可得到直角方程;(2)寫出直線l的極坐標(biāo)方程,與曲線C1,C2聯(lián)立可得,利用正切函數(shù)圖像的性質(zhì)即可得到取值范圍.

(1)由曲線的極坐標(biāo)方程為,

兩邊同乘以,得,

故曲線的直角坐標(biāo)方程為。

(2)射線的極坐標(biāo)方程為,

把射線的極坐標(biāo)方程代入曲線的極坐標(biāo)方程得,

把射線的極坐標(biāo)方程代入曲線的極坐標(biāo)方程得。

,

的取值范圍是。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為實(shí)數(shù).

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線與曲線有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),直線與坐標(biāo)軸的交點(diǎn)是橢圓的兩個(gè)頂點(diǎn).

(1)求橢圓的方程;

(2)若是橢圓上的兩點(diǎn),且滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),圓軸的正半軸的交點(diǎn)是,過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn).

1)若直線軸交于,且,求直線的方程;

2)設(shè)直線,的斜率分別是,,求的值;

3)設(shè)的中點(diǎn)為,點(diǎn),若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)購(gòu)是當(dāng)前民眾購(gòu)物的新方式,某公司為改進(jìn)營(yíng)銷方式,隨機(jī)調(diào)査了100名市民,統(tǒng)計(jì)其周平均網(wǎng)購(gòu)

的次數(shù),并整理得到如右的頻數(shù)直方圖,將周平均網(wǎng)購(gòu)次數(shù)不小于4次的民眾稱為網(wǎng)購(gòu)迷.這100名市民中,年齡不超過(guò)40歲的有65人,且網(wǎng)購(gòu)迷中有5名市民的年齡超過(guò)40歲

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提條件下認(rèn)為網(wǎng)購(gòu)迷與年齡不超過(guò)40歲有關(guān)?

(2)現(xiàn)從網(wǎng)購(gòu)迷中按分層抽樣選5人代表進(jìn)一步進(jìn)行調(diào)查,若從5人代表中任意挑選2人,求挑選的2人中有年齡超過(guò)40歲的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a11, ,其中nN*

1設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式.

2設(shè),數(shù)列{cncn+2}的前n項(xiàng)和為Tn,是否存在正整數(shù)m,使得對(duì)于nN*,恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司共有10條產(chǎn)品生產(chǎn)線,不超過(guò)5條生產(chǎn)線正常工作時(shí),每條生產(chǎn)線每天純利潤(rùn)為1100元,超過(guò)5條生產(chǎn)線正確工作時(shí),超過(guò)的生產(chǎn)線每條純利潤(rùn)為800元,原生產(chǎn)線利潤(rùn)保持不變.未開(kāi)工的生產(chǎn)線每條每天的保養(yǎng)等各種費(fèi)用共100元.用x表示每天正常工作的生產(chǎn)線條數(shù),用y表示公司每天的純利潤(rùn).

(I)寫出y關(guān)于x的函數(shù)關(guān)系式,并求出純利潤(rùn)為7700元時(shí)工作的生產(chǎn)線條數(shù).

(II)為保證新開(kāi)的生產(chǎn)線正常工作,需對(duì)新開(kāi)的生產(chǎn)線進(jìn)行檢測(cè),現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估計(jì)值.為檢測(cè)該生產(chǎn)線生產(chǎn)狀況,現(xiàn)從加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評(píng)判(P表示對(duì)應(yīng)事件的概率)

評(píng)判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無(wú)需檢修;否則需檢修生產(chǎn)線.試判斷該生產(chǎn)線是否需要檢修.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一塊半圓形的空地,直徑米,政府計(jì)劃在空地上建一個(gè)形狀為等腰梯形的花圃,如圖所示,其中為圓心,在半圓上,其余為綠化部分,設(shè).

1)記花圃的面積為,求的最大值;

2)若花圃的造價(jià)為10/,在花圃的邊、處鋪設(shè)具有美化效果的灌溉管道,鋪設(shè)費(fèi)用為500/米,兩腰不鋪設(shè),求滿足什么條件時(shí),會(huì)使總造價(jià)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過(guò)原點(diǎn)且關(guān)于軸對(duì)稱的兩條直線分別交曲線、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案