已知等差數(shù)列{an}滿足:a2=5,a4+a6=22,數(shù)列{bn}滿足b1+2b2+…
+2n-1bn=nan,設(shè)數(shù)列{bn}的前n項和為Sn.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求滿足13<Sn<14的n的集合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,則數(shù)列{bn}的最小項是第幾項,并求該項的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}的首項為a1,公差d=-1,前n項和為Sn.
(1)若S5=-5,求a1的值.
(2)若Sn≤an對任意正整數(shù)n均成立,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=(x>0),數(shù)列{an}滿足a1=1,an=f (n∈N*,且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1·anan+1,若Tn≥tn2對n∈N*恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前項和為.
(1)請寫出數(shù)列的前項和公式,并推導(dǎo)其公式;
(2)若,數(shù)列的前項和為,求的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列{an}的各項均為正整數(shù),Sn為數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是等差數(shù)列,且對任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)n,從集合{a1,a2,…,an}中不重復(fù)地任取若干個數(shù),這些數(shù)之間經(jīng)過加減運(yùn)算后所得數(shù)的絕對值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在公差為d的等差數(shù)列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,,.
(1)若成等比數(shù)列,求的值;
(2)是否存在,使數(shù)列為等差數(shù)列?若存在,求出所有這樣的;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是首項為-1,公差d 0的等差數(shù)列,且它的第2、3、6項依次構(gòu)成等比數(shù)列{bn}的前3項。
(1)求{an}的通項公式;
(2)若Cn=an·bn,求數(shù)列{Cn}的前n項和Sn。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com