(本小題滿分14分) 已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.
(Ⅲ)求證:(其中,e是自然對(duì)數(shù)的底數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對(duì)定義域內(nèi)任意一個(gè),不等式是否恒成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)().
①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
②設(shè)是的兩個(gè)極值點(diǎn),是的一個(gè)零點(diǎn).證明:存在實(shí)數(shù),使得按某種順序排列后構(gòu)成等差數(shù)列,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分) 已知函數(shù),函數(shù)
(I)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(II)若,且函數(shù)在上的最小值是2 ,求的值;
(III)對(duì)于(II)中所求的a值,若函數(shù),恰有三個(gè)零點(diǎn),求b的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)
(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)。
???(1)若函數(shù)是定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
???(2)求函數(shù)的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求曲線在點(diǎn)處的切線方程;
(II)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)已知函數(shù).
(1)若,求曲線在處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com