【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點(diǎn)M,E是CD延長線上一點(diǎn),AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于G.
(1)求證:△EFG為等腰三角形;
(2)求線段MG的長.

【答案】
(1)證明:連接AF,OF,則A,F(xiàn),G,M共圓,∴∠FGE=∠BAF

∵EF⊥OF,

∴∠EFG=∠BAF,

∴∠EFG=∠FGE

∴EF=EG,

∴△EFG為等腰三角形


(2)解:由AB=10,CD=8可得OM=3,

∴ED= OM=4EF2=EDEC=48,

∴EF=EG=4 ,

連接AD,則∠BAD=∠BFD,

∴MG=EM﹣EG=8﹣4


【解析】(1)連接AF,OF,則A,F(xiàn),G,M共圓,∠FGE=∠BAF,證明∠EFG=∠FGE,即可證明:△EFG為等腰三角形;(2)求出EF=EG=4 ,連接AD,則∠BAD=∠BFD,即可求線段MG的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若直線與曲線相切,求的值;

(2)若函數(shù)上不單調(diào),且函數(shù)有三個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),若函數(shù)有四個(gè)零點(diǎn)a,b.c,d.則a+b+cd的值是___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點(diǎn),求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線:上異于原點(diǎn)的動(dòng)點(diǎn), 是平面上兩個(gè)定點(diǎn).當(dāng)的縱坐標(biāo)為時(shí),點(diǎn)到拋物線焦點(diǎn)的距離為.

(1)求拋物線的方程;

2)直線于另一點(diǎn),直線于另一點(diǎn),記直線的斜率為,直線的斜率為. 求證: 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)當(dāng)a=2時(shí),求不等式f(x)<4的解集.
(Ⅱ)當(dāng)a< 時(shí),對于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)寫出下列兩組誘導(dǎo)公式:

①關(guān)于的誘導(dǎo)公式;

②關(guān)于的誘導(dǎo)公式.

(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,且對任意的. 當(dāng)時(shí),,.

(1)求并證明的奇偶性;

(2)判斷的單調(diào)性并證明;

(3);若對任意恒成立求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案