(本題滿分12分) 已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(2)若函數(shù)在處取得極值,對,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)且時,試比較的大。
(1)當(dāng)時在上沒有極值點(diǎn),
當(dāng)時,在上有一個極值點(diǎn)(2)(3)當(dāng)0<x<e時,當(dāng)e<x<e2時
【解析】
試題分析:(Ⅰ),當(dāng)時,在上恒成立,函數(shù) 在單調(diào)遞減,∴在上沒有極值點(diǎn);
當(dāng)時,得,得,
∴在上遞減,在上遞增,即在處有極小值.
∴當(dāng)時在上沒有極值點(diǎn),
當(dāng)時,在上有一個極值點(diǎn).-----3分
(Ⅱ)∵函數(shù)在處取得極值,∴,
∴,---------5分
令,可得在上遞減,在上遞增,
∴,即.------- 7分
(Ⅲ)由(Ⅱ)知在(0,e2)上單調(diào)減
∴0<x<y<e2時, 即
當(dāng)0<x<e時,1-lnx>0,∴y(1-lnx)>x(1-lny), ∴
當(dāng)e<x<e2時,1-lnx<0,∴y(1-lnx)>x(1-lny), ∴-----12分
考點(diǎn):利用函數(shù)的導(dǎo)數(shù)求極值最值單調(diào)區(qū)間
點(diǎn)評:不等式恒成立問題常轉(zhuǎn)化為求函數(shù)最值問題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com