(本題滿分13分)如圖,在三棱柱中,已知
側(cè)面
(Ⅰ)求直線C1B與底面ABC所成角正切值;
(Ⅱ)在棱(不包含端點(diǎn)上確定一點(diǎn)的位置,使得(要求說明理由).
(Ⅲ)在(2)的條件下,若,求二面角的大小.
(Ⅰ) 2 (Ⅱ) 為的中點(diǎn) (Ⅲ) 45°
【解析】本試題主要是考查了線面角和線線垂直的證明,以及二面角的平面角的求解的綜合運(yùn)用。
(1)先建立空間直角坐標(biāo)系,然后表示平面的法向量以及直線的斜向量,利用向量的夾角公式得到線面角的求解。
(2)假設(shè)存在點(diǎn)使得滿足題意,然后利用垂直關(guān)系解得點(diǎn)的坐標(biāo),進(jìn)而分析得到結(jié)論。
(3)在前面的基礎(chǔ)上,進(jìn)一步得到兩個(gè)半平面的法向量的求解,結(jié)合法向量的夾角公式得到二面角的平面角的大小的運(yùn)算。
解:如圖,以B為原點(diǎn)建立空間直角坐標(biāo)系,
則,,···················· 1分
(Ⅰ)直三棱柱中,平面的法向量,又,
設(shè),
則 ·············· 3分
即直線與底面所成角正切值為2. ·········· 4分
(Ⅱ)設(shè),則,
,∴
,即 ·················· 8分
Ⅲ)∵,則,
設(shè)平面的法向量,
則,取 ··········· 10分
∵,∴,
又····················· 11分
∴平面的法向量,∴
∴二面角的大小為45° 13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分) 如圖,某觀測(cè)站在城的南偏西的方向上,由城出發(fā)有一公路,走向是南偏東,在處測(cè)得距為31公里的公路上處,有一人正沿公路向城走去,走了20公里后,到達(dá)處,此時(shí)、間距離為公里,問此人還需要走多少公里到達(dá)城.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)如圖,在平行六面體中,,,,,,是的中點(diǎn),設(shè),,.
(1)用表示;
(2)求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修二空間點(diǎn)、直線、平面之間的位置關(guān)系練習(xí)卷(一) 題型:解答題
(本題滿分13分)如圖所示,在矩形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),將△DEC沿CE折起到△D′EC的位置,使二面角D′—EC—B是直二面角.
(1)證明:BE⊥C D′;
(2)求二面角D′—BC—E的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆湖北省武漢市高二下期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱,,底面為直角梯形,其中BC∥AD, AB⊥AD, ,O為AD中點(diǎn).
(1)求直線與平面所成角的余弦值;
(2)求點(diǎn)到平面的距離
(3)線段上是否存在點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本題滿分13分)
如圖,在三棱柱中,已知,側(cè)面
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱(不包含端點(diǎn)上確定一點(diǎn)的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com