已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時(shí),證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.
解:(1) 當(dāng)時(shí),,利用“定義法”證明。
(2)
【解析】
試題分析:
思路分析:(1) 當(dāng)時(shí),,利用“定義法”證明。執(zhí)行“設(shè)、算、證、結(jié)”。
(2)應(yīng)用均值定理及“對(duì)號(hào)函數(shù)”的單調(diào)性,分,即和,即兩種情況討論得到:。
解:(1) 當(dāng)時(shí),,
任取0<x1<x2≤2,則f(x1)–f(x2)=
因?yàn)?<x1<x2≤2,所以f(x1)–f(x2)>0,即f(x1)>f(x2)
所以函數(shù)f(x)在上是減函數(shù);
(2),當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
當(dāng),即時(shí),的最小值為,
當(dāng),即時(shí),在上單調(diào)遞減,
所以當(dāng)時(shí),取得最小值為,
綜上所述:
考點(diǎn):函數(shù)的單調(diào)性,“對(duì)號(hào)函數(shù)的性質(zhì)”,均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,本題綜合性較強(qiáng),研究函數(shù)的單調(diào)性,可以利用導(dǎo)數(shù),也可以利用常見(jiàn)函數(shù)的單調(diào)性。應(yīng)用均值定理,要注意“一正,二定,三相等”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省莆田一中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時(shí),證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省開(kāi)封市龍亭區(qū)河南大學(xué)附屬中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(重慶卷)解析版(文) 題型:解答題
已知函數(shù)(其中常數(shù)a,b∈R),是奇函數(shù).
(Ⅰ)求的表達(dá)式;
(Ⅱ)討論的單調(diào)性,并求在區(qū)間上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com