【題目】黃金分割比例具有嚴格的比例性,藝術(shù)性,和諧性,蘊含著豐富的美學價值.這一比值能夠引起人們的美感,被稱為是建筑和藝術(shù)中最理想的比例.我們把離心率的橢圓稱為“黃金橢圓”,則以下四種說法中正確的個數(shù)為( )
①橢圓是“黃金橢圓;
②若橢圓,的右焦點且滿足,則該橢圓為“黃金橢圓”;
③設(shè)橢圓,的左焦點為F,上頂點為B,右頂點為A,若,則該橢圓為“黃金橢圓”;
④設(shè)橢圓,,的左右頂點分別A,B,左右焦點分別是,,若,,成等比數(shù)列,則該橢圓為“黃金橢圓”;
A.1B.2C.3D.4
科目:高中數(shù)學 來源: 題型:
【題目】平面與平面平行的充分條件可以是( )
A.內(nèi)有無窮多條直線都與平行
B.直線,,且直線a不在內(nèi),也不在內(nèi)
C.直線,直線,且,
D.內(nèi)的任何一條直線都與平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為,
(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數(shù)據(jù)顯示,x與y之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機構(gòu)從某中學中隨機選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 164 | 160 | 158 | 172 | 162 | 164 | 174 | 166 |
體重 | 60 | 46 | 43 | 48 | 48 | 50 | 61 | 52 |
該調(diào)查機構(gòu)繪制出該組數(shù)據(jù)的散點圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強的線性相關(guān)關(guān)系.
(1)調(diào)查員甲計算得出該組數(shù)據(jù)的線性回歸方程為,請你據(jù)此預(yù)報一名身高為的女高中生的體重;
(2)調(diào)查員乙仔細觀察散點圖發(fā)現(xiàn),這8名同學中,編號為1和4的兩名同學對應(yīng)的點與其他同學對應(yīng)的點偏差太大,于是提出這樣的數(shù)據(jù)應(yīng)剔除,請你按照這名調(diào)查人員的想法重新計算線性回歸話中,并據(jù)此預(yù)報一名身高為的女高中生的體重;
(3)請你分析一下,甲和乙誰的模型得到的預(yù)測值更可靠?說明理由.
附:對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓,定義橢圓的“相關(guān)圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構(gòu)成直角三角形.
(1)求橢圓的方程和“相關(guān)圓”的方程;
(2)過“相關(guān)圓”上任意一點的直線與橢圓交于兩點.為坐標原點,若,證明原點到直線的距離是定值,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=c.
(1)若c=1,sinC=,求ABC的面積S;
(2)若D是AC的中點,且cosB=,BD=,求ABC的三邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com