已知函數(shù)f(x)=x2+2ax-1
(1)若f(1)=2,求實數(shù)a的值,并求此時函數(shù)f(x)的最小值;
(2)若f(x)為偶函數(shù),求實數(shù)a的值;
(3)若f(x)在(-∞,4]上是減函數(shù),那么實數(shù)a的取值范圍.
解:(1)由題可知,f(1)=1+2a-1=2,即a=1,此時函數(shù)f(x)=x2+2x-1=(x+1)2-2≥-2,
故當x=-1時,函數(shù)f(x)min=-2.
(2)若f(x)為偶函數(shù),則有對任意x∈R,都有 f(-x)=(-x)2+2a(-x)-1=f(x)=x2+2ax-1,即4ax=0,故a=0.
(3)函數(shù)f(x)=x2+2ax-1的單調(diào)減區(qū)間是(-∞,-a],而f(x)在(-∞,4]上是減函數(shù),
∴4≤-a,即a≤-4,故實數(shù)a的取值范圍為(-∞,-4].
分析:(1)由f(1)=2,解得a=1,此時函數(shù)f(x)=x2+2x-1=(x+1)2-2,由此可得函數(shù)f(x)的最小值.
(2)若f(x)為偶函數(shù),則有對任意x∈R,都有 f(-x)=f(x),由此求得實數(shù)a的值.
(3)由于函數(shù)f(x)=x2+2ax-1的單調(diào)減區(qū)間是(-∞,-a],而f(x)在(-∞,4]上是減函數(shù),可得 4≤-a,由此求得實數(shù)a的取值范圍.
點評:本題主要考查二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.