【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗(yàn)證這個(gè)結(jié)論,某興趣小組隨機(jī)抽取了100名魔方愛好者進(jìn)行調(diào)查,得到的部分?jǐn)?shù)據(jù)如表所示:已知在全部100人中隨機(jī)抽取1人抽到喜歡盲擰的概率為.
喜歡盲擰 | 不喜歡盲擰 | 總計(jì) | |
男 | 10 | ||
女 | 20 | ||
總計(jì) | 100 |
表(1)
并邀請(qǐng)這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時(shí)間的頻率分布如表所示:
完成時(shí)間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
頻率 | 0.2 | 0.4 | 0.3 | 0.1 |
表(2)
(Ⅰ)將表(1)補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?
(Ⅱ)現(xiàn)從表(2)中完成時(shí)間在[30,40] 內(nèi)的人中任意抽取2人對(duì)他們的盲擰情況進(jìn)行視頻記錄,記完成時(shí)間在[30,40]內(nèi)的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發(fā)生的概率.
(參考公式:,其中)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(I)表(1)見解析,在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡盲擰與性別有關(guān);(II)
【解析】
(I)根據(jù)題意計(jì)算出在全部的100人中喜歡盲擰的人數(shù),可將表(1)補(bǔ)充完整,利用公式求得,與臨界值比較,即可得到結(jié)論;
(II)首先計(jì)算出成功完成時(shí)間在內(nèi)的人數(shù),再利用列舉法和古典概型的概率計(jì)算公式,計(jì)算出所求概率。
(I)在全部的100人中喜歡盲擰的人數(shù)為人, 根據(jù)題意列聯(lián)表如下:
喜歡盲擰 | 不喜歡盲擰 | 總計(jì) | |
男 | 40 | 10 | 50 |
女 | 20 | 30 | 50 |
總計(jì) | 60 | 40 | 100 |
由表中數(shù)據(jù)計(jì)算
所以能在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡盲擰與性別有關(guān);
(Ⅱ)成功完成時(shí)間在[30,40] 內(nèi)的人數(shù)為設(shè)為甲、乙、丙,A,B,C,依題意:從該6人中選出2人,所有可能的情況有:甲乙,甲丙,甲A,甲B, 甲C,乙丙,乙A,乙B,乙C,丙A,丙B,丙C,AB,AC,BC.共15種,
其中甲、乙、丙3人中恰有一人被抽到有:甲A,甲B, 甲C,乙A,乙B,乙C,丙A,
丙B,丙C, 共9種,
故事件A發(fā)生的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)角度看,可以看成是以為自變量的函數(shù),其定義域是.
(1)證明:
(2)試?yán)?/span>1的結(jié)論來證明:當(dāng)為偶數(shù)時(shí),的展開式最中間一項(xiàng)的二項(xiàng)式系數(shù)最大;當(dāng)為奇數(shù)時(shí)的展開式最中間兩項(xiàng)的二項(xiàng)式系數(shù)相等且最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)()的圖象為, 關(guān)于點(diǎn)的對(duì)稱的圖象為, 對(duì)應(yīng)的函數(shù)為.
(Ⅰ)求函數(shù)的解析式,并確定其定義域;
(Ⅱ)若直線與只有一個(gè)交點(diǎn),求的值,并求出交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線.
(I)求的方程;
(II)在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程在上有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鄭州一中社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖:將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望
附:,
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),則關(guān)于函數(shù)的敘述中正確的是( )
A.是偶函數(shù)B.是奇函數(shù)
C.在R上是增函數(shù)D.的值域是
E.的值域是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解四川省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)歲的人群抽樣了人,回答問題“四川省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如表.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第組 |
|
| |
第組 |
|
| |
第組 |
|
| |
第組 |
|
| |
第組 |
|
|
(1)分別求出的值;
(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?
(3)通過直方圖求出年齡的眾數(shù),平均數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com