在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.

(1)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一結(jié)論;
(2)求多面體ABCDE的體積.

(1)見(jiàn)解析   (2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于四面體ABCD,下列命題正確的是         (寫(xiě)出所有正確命題的編號(hào))。
①相對(duì)棱ABCD所在的直線異面;
②由頂點(diǎn)A作四面體的高,其垂足是BCD的三條高線的交點(diǎn);
③若分別作ABCABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對(duì)棱中點(diǎn)的連線,所得的三條線段相交于一點(diǎn);
⑤最長(zhǎng)棱必有某個(gè)端點(diǎn),由它引出的另兩條棱的長(zhǎng)度之和大于最長(zhǎng)棱。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長(zhǎng)為8,高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個(gè)底邊長(zhǎng)為6,高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,底面,且
點(diǎn)的中點(diǎn),且交于點(diǎn).
(1)求證:平面;
(2)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正方形的邊長(zhǎng)為,點(diǎn)分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得

(1)求五棱錐的體積;
(2)在線段上是否存在一點(diǎn),使得平面?若存在,求;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.

(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,,,過(guò)動(dòng)點(diǎn)A,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿將△折起,使(如圖2所示).

(1)當(dāng)的長(zhǎng)為多少時(shí),三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn),分別為棱,的中點(diǎn),試在棱上確定一點(diǎn),使得,并求與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

四面體的六條棱中,有五條棱長(zhǎng)都等于a.
(1)求該四面體的體積的最大值;
(2)當(dāng)四面體的體積最大時(shí),求其表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三棱柱的直觀圖和三視圖如下圖所示,其側(cè)視圖為正三角形(單位cm)

⑴當(dāng)x=4時(shí),求幾何體的側(cè)面積和體積
⑵當(dāng)x取何值時(shí),直線AB1與平面BB1C1C和平面A1B1C1所成角大小相等。

查看答案和解析>>

同步練習(xí)冊(cè)答案