設(shè)函數(shù)f(x)="|x-1|" +|x-a|,.
(I)當(dāng)a =4時,求不等式的解集;
(II)若恒成立,求a的取值范圍.
(I)  (II)

試題分析:(Ⅰ)等價于
 或 或,
解得:
故不等式的解集為.                         ……5分
(Ⅱ)因為: (當(dāng)時等號成立)
所以:                                                  ……8分
由題意得:,解得,∴的取值范圍.             ……10分
點評:對于含絕對值的不等式,要想辦法把絕對值號去掉,可以利用絕對值的幾何意義,也可以分類討論;求解恒成立問題,一般轉(zhuǎn)化為最值問題解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)設(shè)函數(shù)對任意,有,且當(dāng)時,;求函數(shù)上的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則,有的大小關(guān)系為
A.B.
C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)若解不等式;
(Ⅱ)如果,,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域為[0,1]的函數(shù)同時滿足以下三個條件:①對任意,總有;②;③若,則有成立.
(1) 求的值;(2) 函數(shù)在區(qū)間[0,1]上是否同時適合①②③?并予以證明
(3) 假定存在,使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進(jìn)行運輸,且須提前預(yù)訂.
現(xiàn)有貨運收費項目及收費標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標(biāo)準(zhǔn)表
運輸工具
運輸費單價:元/(噸•千米)
冷藏費單價:元/(噸•時)
固定費用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時,火車的速度為       千米/時:
(2)設(shè)每天用汽車和火車運輸?shù)目傎M用分別為(元)和(元),分別求、的函數(shù)關(guān)系式(不必寫出的取值范圍),及為何值時(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應(yīng)提前為下周預(yù)定哪種運輸工具,才能使每天的運輸總費用較省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(1)當(dāng)a=1時,求的單調(diào)區(qū)間。
(2)若上的最大值為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是定義在上的奇函數(shù),且當(dāng),設(shè),給出三個條件:①,③.其中可以推出的條件共有          個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)是實數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意 恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案