過點(diǎn)且與有相同漸近線的雙曲線方程是
A.B.C.D.
A
依題意可設(shè)所求所求線方程為該設(shè)雙曲線過點(diǎn),所以
。則所求雙曲線為。故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓,右焦點(diǎn)為,是橢圓上三個不同的點(diǎn),則“成等差數(shù)列”是“”的( )
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)若衛(wèi)星運(yùn)行軌道橢圓的離心率為,地
心為右焦點(diǎn),
(1)求橢圓方程 ;
(2)若P為橢圓上一動點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.橢圓的長軸長,短軸長,離心率依次是( )
A.5, 3, B.10, 6, C.5, 3 , D.10, 6,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓的離心率為,直線過點(diǎn),,且與橢圓相切于點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、,使得
?若存在,試求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個焦點(diǎn)分別為,離心率.
(1)求橢圓的方程.
(2)一條不與坐標(biāo)軸平行的直線與橢圓交于不同的兩點(diǎn),且線段的中點(diǎn)的橫坐標(biāo)為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓內(nèi)有圓,該圓的切線與橢圓交于兩點(diǎn),且滿足(其中為坐標(biāo)原點(diǎn)),則的最小值是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,橢圓)被圍于由條直線,所圍成的矩形內(nèi),任取橢圓上一點(diǎn),若、),則、滿足的一個等式是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C: (a>b>0)的離心率為,短軸一個端點(diǎn)到右焦點(diǎn)的距離為
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案