在如圖所示的坐標(biāo)平面的可行域(陰影部分且包括邊界)內(nèi),目標(biāo)函數(shù)z=2x-ay取得最大值的最優(yōu)解有無數(shù)個(gè),則a為
-2
-2
分析:由題設(shè)條件,目標(biāo)函數(shù)z=2x-ay,取得最大值的最優(yōu)解有無數(shù)個(gè)知取得最優(yōu)解必在邊界上而不是在頂點(diǎn)上,目標(biāo)函數(shù)最大值應(yīng)在左上方邊界BC上取到,即z=2x-ay應(yīng)與直線BC平行;進(jìn)而計(jì)算可得答案.
解答:解:由題意,最優(yōu)解應(yīng)在線段BC上取到,故z=2x-ay應(yīng)與直線BC平行
∵kBC=
1-2
5-4
=-1,
2
a
=-1,
∴a=-2,
故答案為:-2.
點(diǎn)評:本題考查線性規(guī)劃最優(yōu)解的判定,屬于該知識的逆用題型,知最優(yōu)解的特征,判斷出最優(yōu)解的位置求參數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的坐標(biāo)平面的可行域內(nèi)(陰影部分且包括周界),若使目標(biāo)函數(shù)z=ax+y(a>0)取最大值的最優(yōu)解有無窮多個(gè),則a的值等于( 。
A、
1
3
B、1
C、6
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的坐標(biāo)平面的可行域內(nèi)(陰影部分且包括邊界),若目標(biāo)函數(shù) z=x+ay取得最大值的最優(yōu)解有無數(shù)個(gè),則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的坐標(biāo)平面 的可行域內(nèi)(陰影部分且包括邊界),若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個(gè),則
y
x-a
的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的坐標(biāo)平面的可行域內(nèi)(陰影部分且包括邊界),若目標(biāo)函數(shù) z=x+ay取得最小值的最優(yōu)解有無數(shù)個(gè),則
y
x-a
的最大值是
2
5
2
5

查看答案和解析>>

同步練習(xí)冊答案