【題目】某景點(diǎn)擬建一個(gè)扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長(zhǎng)為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

關(guān)于的函數(shù)關(guān)系式;

已知對(duì)花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4/米,弧線部分的裝飾費(fèi)用為16/米,設(shè)花壇的面積與裝飾總費(fèi)用之比為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.

【答案】 的最大值為

【解析】試題分析:(1)根據(jù)扇形的周長(zhǎng)公式進(jìn)行求解即可.
(2)結(jié)合花壇的面積公式,結(jié)合費(fèi)用之間的關(guān)系進(jìn)行求解即可.

試題解析:

⑴由題可知,

所以.

⑵花壇的面積為,

裝飾總費(fèi)用為

所以花壇的面積與裝飾總費(fèi)用之比為,

, ,

當(dāng)且僅當(dāng)取等號(hào),此時(shí), ,

故花壇的面積與裝飾總費(fèi)用之比為,

的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為調(diào)查高中生選修課的選修傾向與性別關(guān)系,隨機(jī)抽取50名學(xué)生,得到如表的數(shù)據(jù)表:

傾向“平面幾何選講”

傾向“坐標(biāo)系與參數(shù)方程”

傾向“不等式選講”

合計(jì)

男生

16

4

6

26

女生

4

8

12

24

合計(jì)

20

12

18

50


(1)根據(jù)表中提供的數(shù)據(jù),選擇可直觀判斷“選課傾向與性別有關(guān)系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關(guān)系的把握大;
附:K2=

P(k2≤k0

0.100

0.050

0.010

0.005

0.001

k0

2.706

3.841

6.635

7.879

10.828


(2)在抽取的50名學(xué)生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的學(xué)生中抽取8人進(jìn)行問(wèn)卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象,如圖所示.

(1)求函數(shù)的解析式;

(2)若方程上有兩個(gè)不同的實(shí)根,試求的取值范圍;

(3)若,求出函數(shù)上的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a0,a≠1).

1)判斷并證明函數(shù)fx)的奇偶性;

2)若ft2t1+ft2)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對(duì)稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項(xiàng)公式為an=f( )(n∈N),則此數(shù)列前2017項(xiàng)的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線f(x)在點(diǎn)(e,f(e))處的切線斜率為0,且f(x)有極小值,求實(shí)數(shù)a的取值范圍.
(2)①當(dāng) a=b=l 時(shí),證明:xf(x)+2<0; ②當(dāng) a=1,b=﹣1 時(shí),若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內(nèi)恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有大小、形狀相同的紅、黑球各一個(gè),現(xiàn)一次有放回地隨機(jī)摸取3次,每次摸取一個(gè)球

I)試問(wèn):一共有多少種不同的結(jié)果?請(qǐng)列出所有可能的結(jié)果;

)若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,求3次摸球所得總分為5的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(Ⅰ)求證:f(x)≥5;
(Ⅱ)若對(duì)任意實(shí)數(shù)x,15﹣2f(x)<a2+ 都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案