在△ABC中,∠BAC=90°,AB=AC,E為直線AB上一點,過點C作直線CP平行AB,過點E作直線EN平行BC交CP于點N,交直線AC于點D,F(xiàn)為直線AC上一點,且AE=CF,連接EF、FN.
(1)如圖1,當點E、F分別在線段AB、AC上時,求證:△AEF≌△CFN.
(2)如圖2,當點E、F分別在線段AB、CA的延長線上時,
①(1)中的結論是否成立?不必寫出證明過程.
②若∠AEF=15°,EF=m,請用含m的式子表示EN的長.
(3)如圖3,當點E、F分別在線段BA、AC的延長線上時,若∠NEF=a(0°<a<90°),EF=n,請直接用含n,a的式子表示EN的長.
考點:平面圖形的直觀圖,斜二測法畫直觀圖
專題:立體幾何
分析:(1)∵在△ABC中,∠BAC=90°,AB=AC,根據(jù)CP∥AB,EN∥BC,可得△DCN,△AEF也為等腰直角三角形,進而可得AF=CN,由SAS可得:△AEF≌△CFN.
(2)如圖2,當點E、F分別在線段AB、CA的延長線上時,①(1)中的結論依然成立,②進而可得EF=FN=m,又由∠AEF=15°,可得∠AEN=60°,即故△AEN為等邊三角形,故EN=m.
(3)當點E、F分別在線段BA、AC的延長線上時,△AEF≌△CFN依然成立;由EF=FN=n,∠AEF=α,可得:EN=2ncosα.
解答: 證明:(1)∵在△ABC中,∠BAC=90°,AB=AC,
故△ABC為等腰直角三角形,
∵CP∥AB,EN∥BC,
故△DCN,△AEF也為等腰直角三角形,
故CD=CN,AE=AD,
又∵AE=CF,
∴AF=BE=CD=CN,
故△AEF≌△CFN.
解:(2)當點E、F分別在線段AB、CA的延長線上時,
①△AEF≌△CFN依然成立;
②∵△AEF≌△CFN,
∴EF=FN=m,
又∵∠AEF=15°,
∴∠AEN=60°,
故△AEN為等邊三角形,
故EN=m.
(3)當點E、F分別在線段BA、AC的延長線上時,
△AEF≌△CFN依然成立;
∴EF=FN=n,
又∵∠AEF=α,
故EN=2ncosα.
點評:本題考查的知識點是全等三角形的證明,解三角形,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若集合S={y|y=-x2+2x,x∈R},T={x∈R|y=
1-x2
}
,則S∩T是( 。
A、ϕB、TC、SD、有限集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四位好友旅行者體驗城市生活,從某地鐵站同時搭上同一列車,每人分別從前方12個地鐵站中隨機選擇一個地鐵站下車,則四人中至少有2人在同一站下車的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖 在正三棱柱ABC-A1B1C1中,D、F分別是BC、BB1中點.求證:
(1)平面AC1D⊥平面BCC1B1
(2)若BB1=BC,求證:平面FAC⊥平面ADC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱柱ABC-A1B1C1中,AB1⊥BC1,求證:A1C⊥BC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,AD=
3
,點F是PB的中點,點E在邊BC上移動.
(1)求三棱錐E-PAD的體積;
(2)證明:無論點E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+
y2
b2
=1(0<b<2)的左焦點為F,左右頂點分別為A,C,上頂點為B,過F,B,C作⊙P.
(1)當b=
3
時,求圓心P的坐標;
(2)是否存在實數(shù)b,使得直線AB與⊙P相切?若存在求b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,從參加歷史知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖,觀察圖形,回答下列問題:

(1)補全直方圖中80~90這一小組的圖形;
(2)若不低于80分為優(yōu)秀,求樣本中優(yōu)秀人數(shù);
(3)利用頻率直方圖求60名學生的平均成績是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,焦距為2c,若直線y=x-c與橢圓C在第一象限內的一個交點M滿足∠F1MF2=2∠MF1F2,則該橢圓的離心率為( 。
A、
6
-
3
B、
3
2
C、
6
-
3
2
D、
6
-
2
2

查看答案和解析>>

同步練習冊答案