已知a>0,b>0,且a+b=1,試用分析法證明不等式.

證明略


解析:

證明  要證,

只需證ab+,

只需證4(ab)2+4(a2+b2)-25ab+4≥0,

只需證4(ab)2+8ab-25ab+4≥0,

只需證4(ab)2-17ab+4≥0,

即證ab≥4或ab≤,只需證ab≤,

而由1=a+b≥2,∴ab≤顯然成立,

所以原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泉州模擬)已知a<b,則在下列的一段推理過程中,錯(cuò)誤的推理步驟有
.(填上所有錯(cuò)誤步驟的序號(hào))
∵a<b,∴a+a<b+a,即2a<b+a,…①
∴2a-2b<b+a-2b,即2(a-b)<a-b,…②
∴2(a-b)•(a-b)<(a-b)•(a-b),即2(a-b)2<(a-b)2,…③
∵(a-b)2>0,∴可證得 2<1.…④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a、b的等差中項(xiàng)為,且α=a+,β=b+,則α+β的最小值為

A.3                B.4                C.5                       D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且a+b=1,則下列各式中恒成立的是(    )

A.             B.≥4

C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)選修2-1 3.1空間向量及其運(yùn)算練習(xí)卷(解析版) 題型:選擇題

已知A(-1,-2,6),B(1,2,-6)O為坐標(biāo)原點(diǎn),則向量的夾角是(    )

A.0                  B.             C.             D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案