已知函數(shù),若在(0,+)上恒成立,求的取值范圍。
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123324269398.gif" style="vertical-align:middle;" />在(0,+)上恒成立,即
∴           ∵ 的最小值為4      ∴ 
解得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩地相距S千米,汽車從甲地勻速駛到乙地,速度不得超過c千米/小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成,可變部分與速度v(km/h)的平方成正比,比例系數(shù)為b,固定部分為a 
(1)把全程運(yùn)輸成本y(元)表示為v(km/h)的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一動(dòng)直線與兩坐標(biāo)軸的正半軸圍成的三角形的面積的數(shù)值比直線的縱、橫截距之和大1,求這三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)1個(gè)單位質(zhì)量的含污物體進(jìn)行清洗,清洗前其清潔度(含污物體的清潔度定義為:)為0.8,要求洗完后的清潔度是0.99.有兩種方案可供選擇,方案甲:一次清洗;方案乙:兩次清洗.該物體初次清洗后受殘留水等因素影響,其質(zhì)量變?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122256508192.gif" style="vertical-align:middle;" />(1≤a≤3).設(shè)用單位質(zhì)量的水初次清洗后的清潔度是(),用質(zhì)量的水第二次清洗后的清潔度是,其中是該物體初次清洗后的清潔度.
(Ⅰ)分別求出方案甲以及時(shí)方案乙的用水量,并比較哪一種方案用水量較少;
(Ⅱ)若采用方案乙,當(dāng)為某定值時(shí),如何安排初次與第二次清洗的用水量,使總用水量最少?并討論取不同數(shù)值時(shí)對(duì)最少總用水量多少的影響.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某公司租地建倉庫,每月土地占用費(fèi)y1與車庫到車站的距離成反比,而每月庫存貨物的運(yùn)費(fèi)y2與到車站的距離成正比,如果在距車站10公里處建倉庫,這兩項(xiàng)費(fèi)用y1y2分別為2萬元和8萬元,那么要使這兩項(xiàng)費(fèi)用之和最小,倉庫應(yīng)建在離車站__________公里處 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)的等比中項(xiàng),則的最小值為(   )
A.2B.C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若不等式對(duì)任意的、恒成立,則正實(shí)數(shù)的最小值為
A.1B.4C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

 
             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,全集,則___________ 
 

查看答案和解析>>

同步練習(xí)冊(cè)答案