(1)求值:; (2)已知的值

(1)6;     (2)7。

解析試題分析: (1)     (2)因?yàn)?,所以兩邊平方得:,所以=7.
考點(diǎn):指數(shù)冪的運(yùn)算;完全平方公式。
點(diǎn)評(píng):本題易出現(xiàn)的錯(cuò)誤是:在對(duì)等式兩邊進(jìn)行平方的時(shí)候,忘記對(duì)等式的右邊3進(jìn)行平方。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù)  (1)求函數(shù)的定義域;
(2)若函數(shù)在[2,6]上遞增,并且最小值為,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某汽車生產(chǎn)企業(yè)上年度生產(chǎn)一品牌汽車的投入成本為10萬元/輛,出廠價(jià)為13萬元/輛,年銷售量為5000輛.本年度為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛車投入成本增加的比例為(0<<1,則出廠價(jià)相應(yīng)提高的比例為0.7,年銷售量也相應(yīng)增加.已知年利潤=(每輛車的出廠價(jià)-每輛車的投入成本)×年銷售量.
(1)若年銷售量增加的比例為0.4,為使本年度的年利潤比上年度有所增加,則投入成本增加的比例應(yīng)在什么范圍內(nèi)?
(2)年銷售量關(guān)于的函數(shù)為,則當(dāng)為何值時(shí),本年度的年利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知二次函數(shù), 滿足的最小值是.(Ⅰ)求的解析式;(Ⅱ)設(shè)函數(shù),若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)設(shè),寫出數(shù)列的前5項(xiàng);
(Ⅱ)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)函數(shù)f(x)=x3ax2+3x+5(a>0).
(1)已知f(x)在R上是單調(diào)函數(shù),求a的取值范圍;
(2)若a=2,且當(dāng)x∈[1,2]時(shí),f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)定義在實(shí)數(shù)R上的函數(shù)y= f(x)是偶函數(shù),當(dāng)x≥0時(shí),.
(Ⅰ)求f(x)在R上的表達(dá)式;
(Ⅱ)求y=f(x)的最大值,并寫出f(x)在R上的單調(diào)區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
提高過立交橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,成都某立交橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)
(1)若試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的,且,>0),試證明:
成立。
(3)是否存在,使同時(shí)滿足以下條件:①對(duì)任意,,且②對(duì)任意的,都有?若存在,求出的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案