【題目】已知函數(shù).
(1) 把的圖象上每一點的縱坐標變?yōu)樵瓉淼?/span>倍,再將橫坐標向右平移 個單位,可得圖象,求,的值;
(2) 若對任意實數(shù)和任意,恒有,求實數(shù)的取值范圍.
【答案】(1) ;(2) .
【解析】
(1)由圖象變換規(guī)律得到,的值;
(2)令m=3+2sinθcosθ,n=asinθ+acosθ,則,利用三角函數(shù)公式換元,即可得解.
(1)=.
把的圖象上每一點的縱坐標變?yōu)樵瓉淼?/span>倍,再將橫坐標向右平移 個單位,可得圖象,
∴;
(2)任意x∈R與,有恒成立
令m=3+2sinθcosθ,n=asinθ+acosθ,則或
令t=sinθ+cosθ2sinθcosθ=t2﹣1且,
即:m=t2+2,n=at,m﹣n=t2﹣at+2
則:或
參數(shù)分離求最值(注意單調(diào)區(qū)間)
由或
或或
其中在上單調(diào)遞減,,當且僅當等號成立.
由單調(diào)性可得或
綜上可得實數(shù)a的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面內(nèi),定點A,B,C,D滿足 = = , = = =﹣2,動點P,M滿足 =1, = ,則| |2的最大值是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn,其中Sn是數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是首項為,公比為-的等比數(shù)列,求數(shù)列{bn}的通項公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1,并寫出數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax,(a>0), ,命題p:an=f(n)是遞增數(shù)列,命題q:g(x)在(a,π)上有且僅有2條對稱軸.
(1)求g(x)的周期和單調(diào)遞增區(qū)間;
(2)若p∧q為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若f(x)在[1,e]上的最小值為 ,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面積S= c2 , 求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在菱形中, , ,以4個頂點為圓心的扇形的半徑為1,若在該菱形中任意選取一點,該點落在陰影部分的概率為,則圓周率的近似值為( )
A. B. C. D.
【答案】C
【解析】因為菱形的內(nèi)角和為360°,
所以陰影部分的面積為半徑為1的圓的面積,
故由幾何概型可知,
解得.選C。
【題型】單選題
【結(jié)束】
12
【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個零點,則a的取值范圍為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義域為R的奇函數(shù),當x∈[0,+∞)時,f(x)=x2-2x.
(1)寫出函數(shù)y=f(x)的解析式
(2)若方程f(x)=a恰有3個不同的解,求a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com