已知函數(shù)的定義域?yàn)?sub>,若在上為增函數(shù),則稱為“一階比增函數(shù)”;若在上為增函數(shù),則稱為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.
(Ⅰ)已知函數(shù),若且,求實(shí)數(shù)的取值范圍;
(Ⅱ)已知,且的部分函數(shù)值由下表給出,
|
|
|
|
|
|
|
|
|
求證:;
(Ⅲ)定義集合
請問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.
三式相加得
所以 …………6分
因?yàn)?sub>所以
而, 所以
所以 ………8分
(Ⅲ) 因?yàn)榧?sub>
下面我們證明在上無解
假設(shè)存在,使得,
則因?yàn)?img width=34 height=20 id="_x0000_i1263" src='http://thumb.zyjl.cn/pic1/2013/03/13/04/2013031304561692310025.files/image540.gif' >是二階增函數(shù),即是增函數(shù)
一定存在,,這與上面證明的結(jié)果矛盾
所以在上無解
綜上,我們得到,對成立
所以存在常數(shù),使得,,有成立
又令,則對成立,
又有在上是增函數(shù) ,所以,
而任取常數(shù),總可以找到一個(gè),使得時(shí),有
所以的最小值 為0 …13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040104174106084083/SYS201404010418057327658047_ST.files/image002.png">,
(1)求;
(2)若,且是的真子集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。
0 |
|||||
下列關(guān)于函數(shù)的命題:
①函數(shù)在上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)有個(gè)零點(diǎn),則;④已知是的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個(gè)數(shù)是( )
A、4個(gè) B、3個(gè) C、2個(gè) D、1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052323564548436139/SYS201205232357391406841349_ST.files/image002.png">,且,為的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com