一個口袋中裝有大小相同、質地均勻的兩個紅球和兩個白球,從中任意取出兩個,則這兩個球顏色相同的概率是
 
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:這是一個古典概型,列舉出所有的事件,找出兩個球顏色相同所含的基本事件的個數(shù),相比即可.
解答: 解:由題意知本題是一個古典概型,
∵試驗發(fā)生所包含的所有事件數(shù)是∁42,
滿足條件的事件有∁22+∁22,
∴P=
22+22
42
=
1
3

故答案為:
1
3
點評:古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),實際上本題可以列舉出所有事件,概率問題同其他的知識點結合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=cos(3x+φ-
π
6
)(0<φ<π)是奇函數(shù).
(1)求φ;
(2)求函數(shù)y=f(x+
π
12
)的單調減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-
1
2
x2-3x-
5
2
的值域是(  )
A、{y|y≥-
5
2
}
B、{y|y≤-
5
2
}
C、{y|y≥2}
D、{y|y≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓C:
y2
a2
+
x2
2
=1(a>
2
)的離心率
2
2
,其兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足
PF1
PF2
=1,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求橢圓C的方程;
(2)求P點坐標;
(3)當直線PB的斜率為
2
2
時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且過點P(
2
3
2
6
3
).F1,F(xiàn)2是左右兩個焦點,過F1的直線l交橢圓于A,B兩點,若△ABF2的面積為
24
13

(1)求橢圓的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
e2
1
3
x
dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3(2+x),g(x)=log3(2-x)
(1)求函數(shù)y=f(x)-g(x)的定義域;
(2)求使f(x)≥g(x)成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:(k-3)x+(4-k)y+1=0與直線l2:2(k-3)x-2y+3平行,則k為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:x-2y+5=0與⊙C:x2+y2=9相交于A,B兩點,點D為⊙C上異于A,B的一點,則△ADB面積的最大值為多少?

查看答案和解析>>

同步練習冊答案