【題目】下列命題中錯誤的是

A. 若命題為真命題, 命題為假命題, 則命題“”為真命題

B. 命題“若,則”為真命題

C. 對于命題,,則,

D. ”是“”的充分不必要條件個

【答案】D

【解析】

由復合命題的真值表即可判斷A;由原命題的逆否命題的真假,可判斷B;

由全稱命題的否定為特稱命題,可判斷C;由二次方程的解法,結(jié)合充分必要條件的定義可判斷D

若命題p為真命題,命題q為假命題,則¬q為真命題,

命題“p∨(¬q)”為真命題,故A正確;

命題“若x+y≠5,則x≠2或y≠3”的逆否命題為“若x=2且y=3,則x+y=5”為真命題,

可得原命題為真命題,故B正確;

命題px∈R,x2+x+1>0,則¬px0∈R,x02+x0+1≤0,故C正確;

x=1”可推得“x2﹣3x+2=0”,反之不成立,

x2﹣3x+2=0”是“x=1”的必要不充分條件,故D錯誤.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線,圓的圓心為,且經(jīng)過點

1)求圓的方程;

2)若圓與圓關(guān)于直線對稱,點分別為圓,上任意一點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量單位:萬元)和收益單位:萬元)的數(shù)據(jù)如下表

月份

廣告投入量

收益

他們分別用兩種模型①,分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值

Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;

Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除

。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程

ⅱ)若廣告投入量時,該模型收益的預報值是多少?

附:對于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計分別為

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點為(1,0).

(1)求雙曲線C的方程;

(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當x0≠0時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知高中學生的數(shù)學成績與物理成績具有線性相關(guān)關(guān)系,在一次考試中某班7名學生的數(shù)學成績與物理成績?nèi)缦卤恚?/span>

數(shù)學成績

88

83

117

92

108

100

112

物理成績

94

91

108

96

104

101

106

1)求這7名學生的數(shù)學成績的極差和物理成績的平均數(shù);

2)求物理成績對數(shù)學成績的線性回歸方程;若某位學生的數(shù)學成績?yōu)?/span>110分,試預測他的物理成績是多少?

下列公式與數(shù)據(jù)可供參考:

用最小二乘法求線性回歸方程的系數(shù)公式:;

,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種新產(chǎn)品投放市場一段時間后,經(jīng)過調(diào)研獲得了時間(天數(shù))與銷售單價(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點圖(如圖).

1.63

37.8

0.89

5.15

0.92

18.40

表中.

1)根據(jù)散點圖判斷,哪一個更適合作價格關(guān)于時間的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程.

3)若該產(chǎn)品的日銷售量(件)與時間的函數(shù)關(guān)系為,求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且存在不同的實數(shù)x1,x2x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案