隨機變量X的分布列如下表,且E(X)=1.1,則D(X)=________.
X
0
1
x
P

p

0.49
解:因為分布列的性質(zhì)可知,+p+=1,x=1/2,,因為E(X)=1.1,則x=2,
利用方差公式可知,D(X)=0.49
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲同學(xué)在軍訓(xùn)中,練習(xí)射擊項目,他射擊命中目標(biāo)的概率是,假設(shè)每次射擊是否命中相互之間沒有影響.
(Ⅰ)在3次射擊中,求甲至少有1次命中目標(biāo)的概率;
(Ⅱ)在射擊中,若甲命中目標(biāo),則停止射擊,否則繼續(xù)射擊,直至命中目標(biāo),但射擊次數(shù)最多不超過3次,求甲射擊次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩隊參加奧運知識競賽,每隊三人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設(shè)甲隊中每人答對的概率均為,乙隊中三人答對的概率分別為,且各人回答得正確與否相互之間沒有影響.
(1)若用表示甲隊的總得分,求隨機變量分布列和數(shù)學(xué)期望;
(2)用表示事件“甲、乙兩隊總得分之和為”,用表示事件“甲隊總得分大于乙隊總得分”,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某大學(xué)自主招生面試時將20名學(xué)生平均分成甲,乙兩組,其中甲組有4名女學(xué)生,乙組有6名女學(xué)生.現(xiàn)采用分層抽樣(層內(nèi)采用不放回簡單隨即抽樣)從甲、乙兩組中共抽取4名學(xué)生進(jìn)行第一輪面試.
(Ⅰ)求從甲、乙兩組各抽取的人數(shù);
(Ⅱ)求從甲組抽取的學(xué)生中恰有1名女學(xué)生的概率;
(Ⅲ)求抽取的4名學(xué)生中恰有2名男學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,質(zhì)點P在正方形ABCD的四個頂點上按逆時針方向前進(jìn).現(xiàn)在投擲一個質(zhì)地均勻、每個面上標(biāo)有一個數(shù)字的正方體玩具,它的六個面上分別寫有兩個1、兩個2、兩個3一共六個數(shù)字.質(zhì)點P從A點出發(fā),規(guī)則如下:當(dāng)正方體上底面出現(xiàn)的數(shù)字是1,質(zhì)點P前進(jìn)一步(如由A到B);當(dāng)正方體上底面出現(xiàn)的數(shù)字是2,質(zhì)點P前進(jìn)兩步(如由A到C),當(dāng)正方體上底面出現(xiàn)的數(shù)字是3,質(zhì)點P前進(jìn)三步(如由A到D).在質(zhì)點P轉(zhuǎn)一圈之前連續(xù)投擲,若超過一圈,則投擲終止.
(1)求質(zhì)點P恰好返回到A點的概率;
(2)在質(zhì)點P轉(zhuǎn)一圈恰能返回到A點的所有結(jié)果中,用隨機變量ξ表示點P恰能返回到A點的投擲次數(shù),求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
某醫(yī)院有7名醫(yī)生(4男3女), 從7名醫(yī)生中選3人組成醫(yī)療小組下鄉(xiāng)巡診.
(1)設(shè)所選3人中女醫(yī)生的人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)現(xiàn)已知4名男醫(yī)生中張強已被選中,求3名女醫(yī)生中李莉也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個小球從M處投入,通過管道自上而下落ABC。已知小球從每個叉口落入左右兩個 管道的可能性是相等的.某商家按上述投球方式進(jìn)行促銷活動,若投入的小球落到A,B,C,則分別設(shè)為l,

2,3等獎.(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量為獲得k(k=1,2,3)等獎的折扣率,求隨機變量的分布列及期望;(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量為獲得1等獎或2等獎的人次,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1,L2兩條路線(如圖),L1路線上有A1,A2,A3三個路口,各路口遇到紅燈的概率均為L2路線上有B1,B2兩個路口,各路口遇到紅燈的概率依次為,
(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請你
幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人投籃一次命中概率為,共投籃7次。
(1)試問至多有1次命中的概率;
(2)試問出現(xiàn)命中次數(shù)為奇數(shù)的概率與命中次數(shù)為偶數(shù)的概率是否相等?請說明理由。

查看答案和解析>>

同步練習(xí)冊答案