下列各圖是正方體或正四面體,P,Q,R,S分別是所在棱的中點(diǎn),則四個(gè)點(diǎn)不共面的一個(gè)圖是( ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-10練習(xí)卷(解析版) 題型:選擇題
復(fù)數(shù)的虛部是( ).
A. B.- C.-i D. i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)6練習(xí)卷(解析版) 題型:填空題
雙曲線-y2=1的頂點(diǎn)到其漸近線的距離等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)5練習(xí)卷(解析版) 題型:填空題
在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=AA1=1,則D1C1與平面A1BC1所成角的正弦值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)5練習(xí)卷(解析版) 題型:選擇題
如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成的角的余弦值等于 ( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)4練習(xí)卷(解析版) 題型:解答題
在公差為d的等差數(shù)列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)4練習(xí)卷(解析版) 題型:選擇題
已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以下結(jié)論一定正確的是( ).
A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qm
B.?dāng)?shù)列{bn}為等比數(shù)列,公比為q2m
C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm2
D.?dāng)?shù)列{cn}為等比數(shù)列,公比為qmn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)3練習(xí)卷(解析版) 題型:選擇題
在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知8b=5c,C=2B,則cos C=( ).
A. B.- C.± D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)1練習(xí)卷(解析版) 題型:選擇題
命題“對(duì)任意x∈R,都有x2≥0”的否定為 ( ).
A.對(duì)任意x∈R,都有x2<0
B.不存在x∈R,都有x2<0
C.存在x0∈R,使得≥0
D.存在x0∈R,使得<0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com