已知橢圓的短軸長(zhǎng)為,焦點(diǎn)坐標(biāo)分別是(-1,0)和(1,0)

(1)求這個(gè)橢圓的標(biāo)準(zhǔn)方程;

(2)如果直線與這個(gè)橢圓交于不同的兩點(diǎn),求的取值范圍.

(3)若(2)中,求該直線與此橢圓相交所得弦長(zhǎng)

……………12       

(文科) (1)

因?yàn)?sub>    因?yàn)閏=1所以

所以橢圓的標(biāo)準(zhǔn)方程為……………6

(2) 由整理得:

設(shè)      ……………10  

所以|AB|=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的短軸長(zhǎng)為4,焦點(diǎn)是(0,2)和(0,-2),則橢圓方程為(  )
A、
x2
8
+
y2
4
=1
B、
x2
20
+
y2
16
=1
C、
x2
4
+
y2
8
=1
D、
x2
16
+
y2
20
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的短軸長(zhǎng)為2
3
,焦點(diǎn)坐標(biāo)分別是(-1,0)和(1,0).
(1)求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)如果直線y=x+m與這個(gè)橢圓交于不同的兩點(diǎn)A,B,求m的取值范圍;
(3)若(2)中m=1,求該直線與此橢圓相交所得弦長(zhǎng)|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的短軸長(zhǎng)為2
3
,焦點(diǎn)坐標(biāo)分別是(-1,0)和(1,0),
(1)求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)如果直線y=x+m與這個(gè)橢圓交于不同的兩點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的短軸長(zhǎng)為2a,焦點(diǎn)是F1(-,0)、F2(,0),點(diǎn)F1到直線x=-的距離為,過(guò)點(diǎn)F2且傾斜角為銳角的直線l與橢圓交于A、B兩點(diǎn),使得|F2B|=3|F2A|.

(1)求橢圓的方程;

(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市東城區(qū)高三第二次模擬考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分13分)

已知橢圓的短軸長(zhǎng)為,且與拋物線有共同的焦點(diǎn),橢圓的左頂點(diǎn)為A,右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線,與直線分別交于兩點(diǎn).

   (I)求橢圓的方程;

   (Ⅱ)求線段的長(zhǎng)度的最小值;

(Ⅲ)在線段的長(zhǎng)度取得最小值時(shí),橢圓上是否存在一點(diǎn),使得的面積為,若存在求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案