如圖,在正四棱錐S-ABCD中,AB=,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大。
(3)在△ABC內(nèi)是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

【答案】分析:(1)建立空間坐標系,根據(jù)題意求出平面BMD的法向量,因為,進而得到線面平行.
(2)由(1)可得平面BMD的法向量,再求出直線OS所在的向量,利用向量之間的運算求出兩個向量的夾角,再轉化為線面角.
(3)若存在點G,設G點坐標為(x1,y1,0),結合題意可得:,即可求出點G的坐標,再檢驗點G的坐標滿足題意,進而求出NG的長度.
解答:解:(1)以點O為原點,分別為OB、OC、OS所在直線為x軸、y軸、z軸建立空間直角坐標系O-xyz,

又因為
所以,
又∵直線PN不在平面BMD內(nèi)
∴PN∥平面BMD.   …(4分)
(2)設直線SO與平面BMD所成角為θ,
所以sinθ=,
.…(8分)
(3)若存在點G,設G點坐標為(x1,y1,0),

所以點G坐標為…(10分)
在平面直角坐標系xoy中,△ABC的內(nèi)部區(qū)域可表示不等式組:,
經(jīng)檢驗點G的坐標滿足上述不等式組.

故在△ABC內(nèi)存在一點G,使NG⊥平面BMD,且NG=…(12分)
點評:本題考查的知識點是直線與平面所成的角,直線與平面平行的判定以及直線與平面垂直的判定,夾角此類問題的關鍵是熟練掌握直線與平面夾角的定義,及空間線線、線面垂直關系之間的互相轉化,或者建立空間直角坐標系利用空間向量的有關知識解決問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱錐S-ABCD中,E是BC的中點,P點在側面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC.則動點P的軌跡與△SCD組成的相關圖形是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結論中恒成立的個數(shù)為(  )
(1)EP⊥AC; 
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點.
(1)設P是OC的中點,證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大。
(3)在△ABC內(nèi)是否存在一點G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省淮安市漣水縣鄭梁梅高中高一(上)第二次月考數(shù)學試卷(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點,P點在側面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC.則動點P的軌跡與△SCD組成的相關圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省沈陽市東北育才學校高考數(shù)學二模試卷(文科)(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點,P點在側面△SCD內(nèi)及其邊界上運動,并且總是保持PE⊥AC.則動點P的軌跡與△SCD組成的相關圖形是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案