8.已知n=${∫}_{0}^{6}$$\frac{1}{3}$xdx,則($\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$)n的展開式中x2的系數(shù)為(  )
A.-$\frac{4}{27}$B.-$\frac{2}{27}$C.$\frac{2}{27}$D.$\frac{4}{27}$

分析 求定積分得到n=6,代入二項式可得($\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$)6,寫出展開式的通項Tr+1,由x的指數(shù)等于2求得r的值,則展開式中x2的系數(shù)可求.

解答 解:n=${∫}_{0}^{6}$$\frac{1}{3}$xdx=$\frac{1}{6}$x2|${\;}_{0}^{6}$=6,
則($\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$)6的通項公式為Tr+1=${C}_{6}^{r}$($\frac{\sqrt{x}}{3}$)6-r(-$\frac{3}{\sqrt{x}}$)r
=${C}_{6}^{r}$(-1)r32r-6x3-r,r=0,1,2,…,6,
由3-r=2,可得r=1,
則展開式中x2的系數(shù)為${C}_{6}^{1}$(-1)•3-4=-$\frac{2}{27}$.
故選:B.

點評 本題主要考查二項式定理的運用,同時考查定積分的運算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知a,b,c均為正數(shù),且a+b=1,則$\frac{1}{2a+1}$+$\frac{1}{2b+1}$的最小值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)$y=\sqrt{{x^2}+2ax+1}$的定義域為R,則實數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=cos(2x+φ),|φ|≤$\frac{π}{2}$,若f($\frac{8π}{3}$-x)=-f(x),則要得到y(tǒng)=sin2x的圖象只需將y=f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)$f(x)=\sqrt{x({3-x})}+\sqrt{x-1}$的定義域為( 。
A.{x|0≤x≤3}B.{x|1≤x≤3}C.{x|x≥1}D.{x|x≥3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a∈R,函數(shù)f(x)=x2-a|x-1|.
(1)當a=1時,求函數(shù)f(x)的最小值;
(2)當a<0時,討論y=f(x)的圖象與y=|x-a|的圖象的公共點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{x+1(x≥0)}\\{{x}^{2}+2x+1(x<0)}\end{array}\right.$,若矩形ABCD的頂點A、D在x軸上,B、C在函數(shù)y=f(x)的圖象上,且A(1,0),則點D的坐標為(  )
A.(-2,0)B.(-1-$\sqrt{2}$,0)C.(-1,0)D.(-$\frac{1}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某社區(qū)有6000個家庭,其中高收入家庭1200戶,中等收入家庭4200戶,低收入家庭600戶,為調(diào)查社會購買力的某項指標,要從中抽取一個容量為1000的樣本,記作①;某學校高中二年級有15名男籃運動員,要從中選出3人調(diào)查學習負擔情況,記作②;那么完成上述兩項調(diào)查應采用的取樣方法是( 。
A.①簡單隨機抽樣②系統(tǒng)抽樣B.①分層抽樣  ②簡單隨機抽樣
C.①系統(tǒng)抽樣②分層抽樣D.①分層抽樣②系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知A、B是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,若在雙曲線上存在點P滿足2|$\overrightarrow{PA}$+$\overrightarrow{PB}$|≤|$\overrightarrow{AB}$|,則雙曲線C的離心率e的取值范圍是( 。
A.1<e≤2B.e≥2C.1<e≤$\sqrt{2}$D.e≥$\sqrt{2}$

查看答案和解析>>

同步練習冊答案