【題目】下列命題中的說法正確的是( )
A. 若向量,則存在唯一的實數(shù)使得;
B. 命題“若,則”的否命題為“若,則”;
C. 命題“,使得”的否定是:“,均有”;
D. 命題“在中,是的充要條件”的逆否命題為真命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處取得極值,求的值,并求函數(shù)在處的切線方程;
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量平均增加0.2個單位
④若變量和之間的相關(guān)系數(shù)為,則變量和之間的負(fù)相關(guān)很強(qiáng),以上正確說法的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)數(shù)列的前項和滿足.
(1)求數(shù)列的通項公式;;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,求證:在上為增函數(shù);
(Ⅲ)若在區(qū)間上有且只有一個極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為“喜愛打籃球與性別有關(guān)”?說明你的理由.
參考公式:獨立性檢測中,隨機(jī)變量,
其中為樣本容量
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求的單調(diào)增區(qū)間;
(2)令.
①當(dāng)時,若函數(shù)恰有兩個不同的零點,求的值;
②當(dāng)時,若的解集為,且中有且僅有一個整數(shù),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在實數(shù)集上的函數(shù)是奇函數(shù),是偶函數(shù),且.
(1)求、的解析式;
(2)命題命題,若為真,求的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com