在平面內(nèi),不等式確定的平面區(qū)域為,不等式組確定的平面區(qū)域為.
(1)定義橫、縱坐標為整數(shù)的點為“整點”.在區(qū)域任取3個整點,求這些整點中恰有2個整點在區(qū)域的概率;
(2)在區(qū)域每次任取個點,連續(xù)取次,得到個點,記這個點在區(qū)域的個數(shù)為,求的分布列和數(shù)學期望.

(1)
(2)的分布列為


0
1
2
3





 
的數(shù)學期望為.

解析試題分析:(1)作出平面區(qū)域和平面區(qū)域,打出網(wǎng)格,找出整點,數(shù)出在區(qū)域中整點的個數(shù)及這些點落在區(qū)域中的個數(shù),運用排列組合知識和古典概型公式求出所求事件的概率;(2)由獨立重復試驗的概念知,每次在區(qū)域中取一點該點落在區(qū)域內(nèi)的概率為定值,取3次,的3個點,落在區(qū)域內(nèi)點的個數(shù)服從二項分布,根據(jù)二項分布的概率公式和期望公式即可求出分布列與期望.
試題解析:(1)依題可知平面區(qū)域的整點為:共有13個,上述整點在平面區(qū)域的為:共有3個,
.                         (4分)
(2)依題可得,平面區(qū)域的面積為
平面區(qū)域與平面區(qū)域相交部分的面積為.
(設扇形區(qū)域中心角為,則,也可用向量的夾角公式求).
在區(qū)域任取1個點,則該點在區(qū)域的概率為,隨機變量的可能取值為:.
,
,
的分布列為


0
1
2
3





 
的數(shù)學期望:.     (12分)
(或者:,故).
考點:二元一次不等式組表示的平面區(qū)域,古典概型,二項分布

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

甲乙兩班進行消防安全知識競賽,每班出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為,乙隊每人答對的概率都是.設每人回答正確與否相互之間沒有影響,用表示甲隊總得分.
(I)求隨機變量的分布列及其數(shù)學期望E;
(Ⅱ)求在甲隊和乙隊得分之和為4的條件下,甲隊比乙隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

吸煙的危害很多,吸煙產(chǎn)生的煙霧中有近2000種有害物質(zhì),如尼古丁、氰氫酸、氨、一氧化碳、二氧化碳、吡啶、砷、銅、鉛等,還有40多種致癌物,如苯并芘、朕苯胺及煤焦油等。它們隨吸煙者吞咽煙霧時進入體內(nèi),對機體產(chǎn)生危害。為了解某市心肺疾病是否與吸煙有關,某醫(yī)院隨機對入院的50人進行了問卷調(diào)查,得到了如下的列聯(lián)表.

 
 
患心肺疾病
 
不患心肺疾病
 
合計
 
吸煙患者
 
20
 
5
 
25
 
不吸煙患者
 
10
 
15
 
25
 
合計
 
30
 
20
 
50
 
 
(1)用分層抽樣的方法在患心肺疾病的人群中抽3人,其中吸煙患者抽到多少人?
(2)在上述抽取的3人中選2人,求恰有一名不吸煙患者的概率;
(3)是否有99.5%的把握認為患心肺疾病與吸煙有關?
附:

 
0.15
 
0.10
 
0.05
 
0.025
 
0.010
 
0.005
 
0.001
 

 
2.072
 
2.706
 
3.841
 
5.024
 
6.635
 
7.879
 
10.828
 
 
參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次任意抽取3道題,獨立作答,然后由乙回答剩余3題,每人答對其中的2題就停止答題,即闖關成功。已知6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是
(1)求甲、乙至少有一人闖關成功的概率;
(2)設甲答對題目的個數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校研究性學習小組從汽車市場上隨機抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結果分成5組:,繪制成如圖所示的頻率分布直方圖.

(1)求直方圖中的值;
(2)求續(xù)駛里程在的車輛數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)為了解高二學生作業(yè)量和玩電腦游戲的情況,對該地區(qū)內(nèi)所有高二學生采用隨機抽樣的方法,得到一個容量為200的樣本.統(tǒng)計數(shù)據(jù)如下:

(1)已知該地區(qū)共有高二學生42500名,根據(jù)該樣本估計總體,其中喜歡電腦游戲并認為作業(yè)不多的人有多少名?
(2)在A,B,C,D,E,F(xiàn)六名學生中,僅有A,B兩名學生認為作業(yè)多.如果從這六名學生中隨機抽取兩名,求至少有一名學生認為作業(yè)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

某高校進行自主招生面試時的程序如下:共設3道題,每道題答對給10分、答錯倒扣5分(每道題都必須回答,但相互不影響).設某學生對每道題答對的概率都為,則該學生在面試時得分的期望值為     分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

一只不透明的袋子中裝有1個白球和1個紅球,這些球除顏色外其余都相同,攪勻后從中任意摸出1個球,記錄下顏色后放回袋中并攪勻,再從中任意摸出1個球,則兩次摸出的球顏色相同的概率是           ;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知復數(shù)z=x+yi(x,y∈R)在復平面上對應的點為M.
(1)設集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數(shù)作為x,從集合Q中隨機取一個數(shù)作為y,求復數(shù)z為純虛數(shù)的概率;
(2)設x∈[0,3],y∈[0,4],求點M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習冊答案