【題目】已知是自然數(shù)1,2,…,的一個(gè)排列且滿足對(duì)任意均有

(1)若記為數(shù)在排列中所處位置的序號(hào)如排列,,,).求證對(duì)每一個(gè)滿足題意的排列,均有成立.

(2)試求滿足題意的排列的個(gè)數(shù)

【答案】(1)見解析(2)

【解析】

(1)證法一:假設(shè)結(jié)論不成立,則必存在,使

不妨設(shè),,

首先證明:對(duì)任意整數(shù),有

若不然,設(shè)中有小于的,設(shè)為使的最小值,

則由的最小性知,

故由.得

又因,故

.矛盾.

故對(duì)任意,

是各不相同的自然數(shù),

另一方面,,

于是,,即

這與前面矛盾.故結(jié)論成立.

證法二:用數(shù)學(xué)歸納法證明更強(qiáng)的命題:

對(duì)任意,

、2時(shí),易知命題成立.

設(shè)時(shí),命題也成立.

時(shí),考慮所有的排列,我們從兩方面求和

一方面,,

另一方面,,

,且

因而,,,…,,

即當(dāng)時(shí),,

而后個(gè)數(shù)的排列,為滿足要求的連續(xù)個(gè)數(shù)的排列,

由歸納假設(shè)知,時(shí),也有

又易知.這樣的排列僅有一個(gè),即,同樣也有

故由數(shù)學(xué)歸納法知命題成立.

(2)顯然,.假設(shè),…,均已求出,我們來求

考慮當(dāng)時(shí)排列的個(gè)數(shù)

由(1)證法二知,此時(shí)排列的前個(gè)數(shù)是惟一確定的,

而后個(gè)連續(xù)自然數(shù)的滿足題意的排列方法數(shù)為

又對(duì)后數(shù)的任一滿足題意的排列,均有

,故

,

故滿足題意的排列個(gè)數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是拋物線的焦點(diǎn),點(diǎn),分別在拋物線和圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則周長(zhǎng)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,以橢圓的左頂點(diǎn)為圓心作圓,設(shè)圓與橢圓交于點(diǎn)與點(diǎn)

1)求橢圓的方程;

2)求的最小值,并求此時(shí)圓的方程;

3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn),為坐標(biāo)原點(diǎn),

求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊形玫瑰園的個(gè)頂點(diǎn)各栽有1棵紅玫瑰,每?jī)煽眉t玫瑰之間都有一條直小路想通,這些直小路沒有出現(xiàn)三線共點(diǎn)的情況——它們把花園分割成許多不重疊的區(qū)域(三角形、四邊形、……),每塊區(qū)域都栽有一棵白玫瑰(或黑玫瑰).

(1)求出玫瑰園里玫瑰總棵樹的表達(dá)式.

(2)花園里能否恰有99棵玫瑰?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.

(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中

(1)是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;

(2)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,側(cè)面底面,,為線段的中點(diǎn).

1)求證:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)圓周上有9個(gè)點(diǎn),以這9個(gè)點(diǎn)為頂點(diǎn)作3個(gè)三角形.當(dāng)這3個(gè)三角形無公共頂點(diǎn)且邊互不相交時(shí),我們把它稱為一種構(gòu)圖.滿足這樣條件的構(gòu)圖共有( )種.

A. 3 B. 6 C. 9 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】王府井百貨分店今年春節(jié)期間,消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對(duì)春節(jié)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)判斷變量之間是正相關(guān)還是負(fù)相關(guān);

(3)若該活動(dòng)只持續(xù)10天,估計(jì)共有多少名顧客參加抽獎(jiǎng).

參與公式: ,

查看答案和解析>>

同步練習(xí)冊(cè)答案