某公司為了實(shí)現(xiàn)1000萬元利潤的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷售部門的獎(jiǎng)勵(lì)方案;在銷售利潤達(dá)到10萬元時(shí),按銷售利潤進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎(jiǎng)金總數(shù)不超過萬元,同時(shí)獎(jiǎng)金不超過利潤的.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:,,.其中哪個(gè)模型能符合公司的要求?
模型確實(shí)能符合公司要求
借助計(jì)算器或計(jì)算機(jī)作出函數(shù),,,
的圖象,觀察圖象發(fā)現(xiàn),在區(qū)間上,模型,的圖象都有一部分在直線的上方,只有模型的圖象始終在的下方,這說明只有按模型進(jìn)行獎(jiǎng)勵(lì)時(shí)才符合公司的要求.下面通過計(jì)算確認(rèn)上述判斷.
 
首先計(jì)算哪個(gè)模型的獎(jiǎng)金總數(shù)不超過萬.
對(duì)于模型,它在區(qū)間上遞增,當(dāng)時(shí),,因此該模型不符合要求;
對(duì)于模型,由函數(shù)圖象,并利用計(jì)算器,可知在區(qū)間內(nèi)有一個(gè)點(diǎn)滿足,由于它在區(qū)間上遞增,因此當(dāng)時(shí),,因此該模型也不符合要求;
對(duì)于模型,它在區(qū)間上遞增,而且當(dāng)時(shí),,所以它符合獎(jiǎng)金總數(shù)不超過萬元的要求.
再計(jì)算按模型獎(jiǎng)勵(lì)時(shí),獎(jiǎng)金是否不超過利潤的,
即當(dāng)時(shí),是否有成立.
,
利用計(jì)算器或計(jì)算機(jī)作出函數(shù)的圖象,
 
由圖象可知它是遞減的,因此,即
所以,當(dāng)時(shí),.說明按模型獎(jiǎng)勵(lì),獎(jiǎng)金不會(huì)超過利潤的
綜上所述,模型確實(shí)能符合公司要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且對(duì)一切實(shí)數(shù)x,不等式f(x)≥g(x)恒成立;
(Ⅰ)(本問5分)求實(shí)數(shù)a、b的值;
(Ⅱ)(本問7分)設(shè)F(x)=f(x)-g(x),數(shù)列{an}滿足關(guān)系an=F(n),
證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義在實(shí)數(shù)集上的函數(shù),且對(duì)任意實(shí)數(shù)滿足恒成立
(1)求,
(2)求函數(shù)的解析式;
(3)若方程恰有兩個(gè)實(shí)數(shù)根在內(nèi),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠在甲、乙兩地的兩個(gè)分廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái),現(xiàn)銷售給地10臺(tái),地8臺(tái).已知從甲地調(diào)動(dòng)1臺(tái)至地,地的運(yùn)費(fèi)分別為400元和800元,從乙地調(diào)運(yùn)1臺(tái)至地,地的費(fèi)用分別為300元和500元.
(1)  設(shè)從乙地調(diào)運(yùn)臺(tái)至地,求總費(fèi)用關(guān)于臺(tái)數(shù)的函數(shù)解析式;
(2)  若總運(yùn)費(fèi)不超過9000元,問共有幾種調(diào)運(yùn)方案;
(3)  求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地有三個(gè)村莊,分別位于等腰直角三角形ABC的三個(gè)頂點(diǎn)處,已知AB=AC=6km,現(xiàn)計(jì)劃在BC邊的高AO上一點(diǎn)P處建造一個(gè)變電站. 記P到三個(gè)村莊的距離之和為y.
(1)設(shè),把y表示成的函數(shù)關(guān)系式;
(2)變電站建于何處時(shí),它到三個(gè)小區(qū)的距離之和最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)圓柱形容器的底部直徑是cm,高是cm.現(xiàn)在以cm/s的速度向容器內(nèi)注入某種溶液.求容器內(nèi)溶液的高度cm與注入溶液的時(shí)間s之間的函數(shù)解析式,并寫出函數(shù)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 某汽車運(yùn)輸公司購買了一批豪華大客車投入客運(yùn),據(jù)市場(chǎng)分析,每輛客車營運(yùn)的總利潤y萬元與營運(yùn)年數(shù)x(x∈N*)的關(guān)系為y=-x2+18x-36。
(1)每輛客車營運(yùn)多少年,可使其營運(yùn)總利潤最大?
(2)每輛客車營運(yùn)多少年,可使其營運(yùn)年平均利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在不考慮空氣阻力的條件下,火箭的最大速度m/s和燃料的質(zhì)量kg,火箭(除燃料外)的質(zhì)量kg的函數(shù)關(guān)系是.當(dāng)燃料質(zhì)量是火箭質(zhì)量的多少倍時(shí),火箭的最大速度可達(dá)12km/s?

查看答案和解析>>

同步練習(xí)冊(cè)答案