口袋中有5只球,編號為1,2,3,4,5,從中任取3球,以表示取出的球的最大號碼,則(     )
A. 4B. 5C.D.
C
解:由題意,ξ的取值可以是3,4,5
ξ=3時,概率是
ξ=4時,概率是 (最大的是4 其它兩個從1、2、3里面隨機。
ξ=5時,概率是 (最大的是5,其它兩個從1、2、3、4里面隨機取)
∴期望Eξ=3×1 /10 +4×3/ 10 +5×6 /10 =4.5
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

QQ先生的魚缸中有7條魚,其中6條青魚和1條黑魚,計劃從當天開始,每天中午從該魚缸中抓出1條魚(每條魚被抓到的概率相同)并吃掉.若黑魚未被抓出,則它每晚要吃掉1條青魚(規(guī)定青魚不吃魚).
(Ⅰ)求這7條魚中至少有6條被QQ先生吃掉的概率;
(Ⅱ)以表示這7條魚中被QQ先生吃掉的魚的條數(shù),求的分布列及其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某學校隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學所需時間的范圍是,樣本數(shù)據(jù)分組為,,,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果上學所需時間不少于1小時的學生可申請在學校住宿,
請估計學校600名新生中有多少名學生可以申請住宿;
(Ⅲ)從學校的新生中任選4名學生,這4名學生中上學所需時間
少于20分鐘的人數(shù)記為,求的分布列和數(shù)學期望.(以直方圖中新生上學所需時間少于20分鐘的頻率作為每名學生上學所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.
    視覺        
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分數(shù)據(jù)丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(I)試確定、的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數(shù)為,求隨機變量的數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)2009年,福特與浙江吉利就福特旗下的沃爾沃品牌業(yè)務的出售在商業(yè)條款上達成一致,據(jù)專家分析,浙江吉利必須完全考慮以下四個方面的挑戰(zhàn):第一個方面是企業(yè)管理,第二個方面是汽車制造技術(shù),第三個方面是汽車銷售,第四個方面是人才培養(yǎng).假設(shè)以上各種挑戰(zhàn)各自獨立,并且只要第四項不合格,或第四項合格且前三項中至少有兩項不合格,企業(yè)將破產(chǎn),若第四項挑戰(zhàn)失敗的概率為,其他三項挑戰(zhàn)失敗的概率分別為.
(1)求浙江吉利不破產(chǎn)的概率;
(2)專家預測:若四項挑戰(zhàn)均成功,企業(yè)盈利15億美元;若第一、第二、第三項挑戰(zhàn)中僅有一項不成功且第四項挑戰(zhàn)成功,企業(yè)盈利5億美元;若企業(yè)破產(chǎn),企業(yè)將損失10億美元.設(shè)浙江吉利并購后盈虧為X億美元,求隨機變量X的期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩名工人加工同一種零件,兩人每天加工的零件數(shù)相等,所出次品數(shù)分別為,,且的分布列為:

0
1
2




 
試比較兩名工人誰的技術(shù)水平更高.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如果甲乙兩個乒乓球選手進行比賽,而且他們在每一局中獲勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.
(1)試分別求甲打完4局、5局才獲勝的概率;
(2)設(shè)比賽局數(shù)為ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1A2A3三個路口,各路口遇到紅燈的概率均為;L2路線上有B1B2兩個路口,各路口遇到紅燈的概率依次為,

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)的數(shù)學期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人獨立解出某一道數(shù)學題的概率相同,已知該題被甲或乙解出的概率為0.36. 求:(12分)
(1)甲獨立解出該題的概率;
(2)解出該題的人數(shù)的數(shù)學期望.

查看答案和解析>>

同步練習冊答案