下列不等式中與lg(x-2)≤0同解的是( )
A.(x-3)(2-x)≥0
B.
C.
D.(x-3)(2-x)>0
【答案】分析:求出lg(x-2)≤0的解,然后分別求出A、B、C、D的解即可確定答案.
解答:解:lg(x-2)≤0的解是2<x≤3
(x-3)(2-x)≥0的解是2≤x≤3
的解是2<x≤3
的解是2≤x<3
(x-3)(2-x)>0的解是2<x<3
故選B.
點(diǎn)評:本題考查分式不等式,對數(shù)不等式,二次不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列不等式中與lg(x-2)≤0同解的是( 。
A、(x-3)(2-x)≥0
B、
x-3
2-x
≥0
C、
2-x
x-3
≥0
D、(x-3)(2-x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程。ㄈ私虒(shí)驗(yàn)版) B版 人教實(shí)驗(yàn)版 B版 題型:013

下列不等式中與lg(x-2)≤0同解的是

[  ]

A.(x-3)(2-x)≥0

B.

C.

D.(x-3)(2-x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列不等式中與lg(x-2)≤0同解的是


  1. A.
    (x-3)(2-x)≥0
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    (x-3)(2-x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列不等式中與lg(x-2)≤0同解的是(  )
A.(x-3)(2-x)≥0B.
x-3
2-x
≥0
C.
2-x
x-3
≥0
D.(x-3)(2-x)>0

查看答案和解析>>

同步練習(xí)冊答案