【題目】微信是現(xiàn)代生活進行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計

經(jīng)常使用微信




不經(jīng)常使用微信




合計




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







【答案】I180人;(II)有的把握認為經(jīng)常使用微信與年齡有關(guān);(III

【解析】試題分析:(I)由已知可得的列聯(lián)表;(II)將列聯(lián)表中數(shù)據(jù)代入公式可得,與臨界值比較,即得出結(jié)論;(III)利用列舉法確定基本事件,即可求出事件A“選出的人均是青年人的概率.

試題解析:()由已知可得,該公司員工中使用微信的共:

經(jīng)常使用微信的有人,其中青年人:

所以可列下面列聯(lián)表:


青年人

中年人

合計

經(jīng)常使用微信

80

40

120

不經(jīng)常使用微信

55

5

60

合計

135

45

180

)將列聯(lián)表中數(shù)據(jù)代入公式可得:

由于,所以有的把握認為經(jīng)常使用微信與年齡有關(guān)

)從經(jīng)常使用微信的人中抽取6人中,青年人有人,中年人有2

設(shè)4名青年人編號分別1,2,3,4,2名中年人編號分別為5,6,

從這6人中任選2的基本事件為:

1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5

3,6)(4,5)(4,6)(5,6)共15

其中事件A“選出的2人均是青年人的基本事件為:(1,2)(1,3)(1,4)(2,3

2,4)(3,4)共6個.故

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________

【答案】3

【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為,高為,

如圖所示, 平面,

所以底面積為,

幾何體的高為,所以其體積為

點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進行綜合考慮求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應體積公式求解

型】填空
結(jié)束】
16

【題目】已知橢圓 的右焦點為, 為直線上一點,線段于點,若,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為2,離心率為

(1)求橢圓C的方程;

(2)設(shè)過點M(2,0)的直線l與橢圓C相交于A,B兩點,F(xiàn)1為橢圓的左焦點.

若B點關(guān)于x軸的對稱點是N,證明:直線AN恒過一定點;

試求橢圓C上是否存在點P,使F1APB為平行四邊形?若存在,求出F1APB的面積,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為,某同學用隨機模擬的方法確定這三天中恰有兩天下雨的概率該同學利用計算器可以產(chǎn)生0到9之間的取整數(shù)值的隨機數(shù),他用1,4,7表示下雨,用0,2,3,5,6,8,9表示不下雨。實驗得出如下20組隨機數(shù):

245,368,590,126,217,895,560,061,378,902

542,751,245,602,156,035,682,148,357,438

請根據(jù)該同學實驗的數(shù)據(jù)確定這三天中恰有兩天下雨的概率為 __________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣2sinx.
(Ⅰ)求函數(shù)f(x)在 上的最值;
(Ⅱ)若存在 ,使得不等式f(x)<ax成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)已知x2+y2=1,求2x+3y的取值范圍;
(Ⅱ)已知a2+b2+c2﹣2a﹣2b﹣2c=0,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】比較下列各組數(shù)的大小:

(1)log0.7 1.3log0.71.8;

(2)log35log64;

(3)(lgn)1.7(lgn)2 (n>1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)都為某個三角形的三邊長,則實數(shù)m的取值范圍是(
A.( ,6)
B.( ,6)
C.( ,5)
D.( ,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象與軸交于點,周期是

(1)求函數(shù)解析式,并寫出函數(shù)圖象的對稱軸方程和對稱中心;

(2)已知點,點是該函數(shù)圖象上一點,點的中點,當 , 時,求的值.

查看答案和解析>>

同步練習冊答案