對于實數(shù)a,b,c,“ac2>bc2”是“a>b”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的關(guān)系,結(jié)合充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若ac2>bc2,則c≠0,則不等式等價為a>b,即充分性成立,
若c=0,若a>b,則ac2>bc2不成立,即必要性不成立,
故,“ac2>bc2”是“a>b”的充分不必要條件,
故選:A
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用定義法證明函數(shù)f(x)=
x2
x2-1
在區(qū)間(0,1)是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.50.5,b=0.30.5,c=log0.32,則a,b,c的大小關(guān)系是(  )
A、a>b>c
B、a<b<c
C、b<a<c
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從裝有大小相同的3個紅球和2個白球的口袋內(nèi)任取1個球,取到白球的概率為( 。
A、
1
5
B、
1
3
C、
1
2
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某食品廠定期購買面粉,已知該廠每天需要面粉6噸,每噸面粉的價格為1800元,面粉的保管為平均每天每噸3元,購面粉每次需支付運費900元.設(shè)該廠x(x∈N*)天購買一次面粉,平均每天所支付的總費用為y元.
(平均每天所支付的總費用=
所有的總費用
天數(shù)

(1)前三天面粉保管費用共多少元;
(2)求函數(shù)y關(guān)于x的表達(dá)式;
(3)求函數(shù)y最小值及此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x≤1,條件q:
1-x
x
<0,則q是?p成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)Z滿足Z2+3=0,則Z3的值為( 。
A、±3
3
i
B、3
3
i
C、3
3
D、±3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三年級有800名學(xué)生期中考試的數(shù)學(xué)成績有160人在120分以上(包括120分),480人在120以下90分以上(包括90分),其余的在90分以下,現(xiàn)欲從中抽出20人研討進(jìn)一步改進(jìn)數(shù)學(xué)教和學(xué)的座談;合適的抽樣方法應(yīng)為
 
.(填寫:系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的雙曲線C的右焦點為(
2
,0),右頂點為A(1,0).
(1)求雙曲線C的方程;
(2)直線l經(jīng)過雙曲線C的右頂點A且斜率為k(k>0),若直線l與雙曲線C的另一個交點為B,且
OA
OB
>3(其中O為原點),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案