(09年濱州一模理)(12分)

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,平面PBC⊥底面ABCD,且PB=PC=.

(Ⅰ)求證:AB⊥CP;

(Ⅱ)求點(diǎn)到平面的距離;

(Ⅲ)設(shè)面與面的交線為,求二面角的大。

解析:(Ⅰ)∵   底面ABCD是正方形,

∴AB⊥BC,

又平面PBC⊥底面ABCD  

平面PBC ∩  平面ABCD=BC

∴AB  ⊥平面PBC

又PC平面PBC

∴AB  ⊥CP  ………………3分

(Ⅱ)解法一:體積法.由題意,面,

中點(diǎn),則

.

再取中點(diǎn),則   ………………5分

設(shè)點(diǎn)到平面的距離為,則由

.                   ………………7分

解法二:

中點(diǎn),再取中點(diǎn)

,

過(guò)點(diǎn),則

中,

∴點(diǎn)到平面的距離為。  ………………7分

解法三:向量法(略)

(Ⅲ)

就是二面角的平面角.

∴二面角的大小為45°.   ………………12分

方法二:向量法(略).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年濱州一模理)(14分)

已知曲線過(guò)上一點(diǎn)作一斜率為的直線交曲線于另一點(diǎn),點(diǎn)列的橫坐標(biāo)構(gòu)成數(shù)列,其中

(I)求的關(guān)系式;

(II)令,求證:數(shù)列是等比數(shù)列;

(III)若(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有cn+1>cn成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年濱州一模理)(12分)

已知方向向量為的直線過(guò)點(diǎn)和橢圓的右焦點(diǎn),且橢圓的離心率為

(I)求橢圓的方程;

(II)若已知點(diǎn),點(diǎn)是橢圓上不重合的兩點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年濱州一模理)(12分)

設(shè)函數(shù)

(I)若直線l與函數(shù)的圖象都相切,且與函數(shù)的圖象相切于點(diǎn)

(1,0),求實(shí)數(shù)p的值;

(II)若在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)p的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年濱州一模理)(12分)

已知向量,其中>0,且,又的圖像兩相鄰對(duì)稱軸間距為.

(Ⅰ)求的值;

(Ⅱ) 求函數(shù)在[-]上的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案