已知函數(shù)
(Ⅰ)當在區(qū)間上的最大值和最小值;
(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.
(Ⅰ)(Ⅱ)
(Ⅰ)當時,(2’)對于,有,∴在區(qū)間上為增函數(shù)。∴,(5’)
(Ⅱ)令,則的定義域為。(6’)
區(qū)間上,函數(shù)的圖象恒在直線下方等價于在區(qū)間上恒成立。
==(8’)
①若,令,解得。當,即時,在上有,
此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
,即,同理可知,在區(qū)間上,有,也不合題意;(10’)
②若時,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使<0,在此區(qū)間上恒成立,只須滿足,由此求得的范圍是。(12’)
綜合①②可知,當時,函數(shù)的圖象恒在直線下方。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,型卡車滿載行駛時,每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費外,人工工資、車損等其他費用平均每小時300元.已知燃油價格為7.5元/L.
(1)設(shè)運送這車水果的費用為(元)(不計返程費用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運送這車水果的費用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),其中是常數(shù),且
(1)求函數(shù)的極值;
(2)證明:對任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對任意正數(shù)都有:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是定義在上的兩個可導(dǎo)函數(shù),若,滿足,則滿足(    )
A.B.為常數(shù)函數(shù)
C.D.為常數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象與的圖象關(guān)于直線對稱。
(Ⅰ)若直線的圖像相切, 求實數(shù)的值;
(Ⅱ)判斷曲線與曲線公共點的個數(shù).
(Ⅲ)設(shè),比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=ex-f(0)x+x2,則f′(1)=____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)f(x)=ax3x2x-5在(-∞,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)yf(x)的圖象關(guān)于y軸對稱,且當x∈(-∞,0)時,f(x)+xf′(x)<0成立,a=(20.2f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),則ab,c的大小關(guān)系是(  )
A.bacB.cab
C.cbaD.acb

查看答案和解析>>

同步練習冊答案