8.若y=f(x)是定義在R上的函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤2時,f(x)=4x+$\frac{3}{x}$,則f(5)=7.

分析 利用已知條件以及函數(shù)的解析式求解即可.

解答 解:y=f(x)是定義在R上的函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤2時,f(x)=4x+$\frac{3}{x}$,
則f(5)=f(3+2)=-f(3)=-f(1+2)=f(1)=4+3=7.
故答案為:7.

點評 本題考查函數(shù)值的求法,解析式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在正項數(shù)列{an}中,a1=2,且點($\sqrt{a_n}$,$\sqrt{{a_{n-1}}}$)在直線x-$\sqrt{2}$y=0上,則前n項和Sn等于( 。
A.2n-1B.2n+1-2C.${2^{\frac{n}{2}}}-\sqrt{2}$D.${2^{\frac{n-2}{2}}}-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)$f(x)=3sin({2x+\frac{π}{3}})$的圖象向右平移$\frac{π}{2}$個單位長度,所得圖象對應(yīng)的函數(shù)(  )
A.其中一條對稱軸方程為$x=-\frac{π}{6}$B.在區(qū)間$[{\frac{π}{12},\frac{7π}{12}}]$上單調(diào)遞增
C.當(dāng)$x=\frac{π}{12}+kπ({k∈Z})$時取得最大值D.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知正方形ABCD的頂點坐標(biāo)分別為A(0,1),B(2,0),C(3,2).
(1)求CD邊所在直線的方程;
(2)求以AC為直徑的圓M的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過圓(x-1)2+y2=1外一點(3,0)作圓的切線,則切線的長為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對于n∈N*,定義$f(n)=[{\frac{n}{10}}]+[{\frac{n}{{{{10}^2}}}}]+[{\frac{n}{{{{10}^3}}}}]+…+[{\frac{n}{{{{10}^k}}}}]$,其中k是滿足10k≤n的最大整數(shù),[x]表示不超過x的最大整數(shù),如[2.5]=2,[3]=3,則
(Ⅰ)f(2016)=223;
(Ⅱ)滿足f(m)=100的最大整數(shù)m為919.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3)(x2-8x+c4),集合M={x|f(x)=0}={x1,x2,x3,…,x7}⊆N*,設(shè)c1≥c2≥c3≥c4則c1-c4=( 。
A.11B.13C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合S={-2,0,2,4},T={-2,2,4},則下列選項中正確的是( 。
A.T⊆SB.T∈SC.S∩T={-2,2,4}D.S∪T={-2,0,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等差數(shù)列{an}的前n項和為Sn,若S5=8,S10=20,則S15等于( 。
A.16B.18C.36D.38

查看答案和解析>>

同步練習(xí)冊答案