(1)當(dāng)x>a時(shí),求證:f(x)<x;
(2)求證:|f(x1)-f(x2)|<|x1-x2|(x1,x2∈R,x1≠x2);(3)試舉一個(gè)定義域?yàn)镽的函數(shù)f(x),滿足0<f′(x)<1,且f′(x)不為常數(shù).
解:(1)證明:令g(x)=f(x)-x,則g′(x)=f′(x)-1<0.故g(x)為減函數(shù).又因?yàn)間(a)=f(a)-a=0,所以當(dāng)x>a時(shí),g(x)<g(a)=0,所以f(x)-x<0,即f(x)<x.5分
(2)證明:不妨設(shè)x1<x2,由(1)知g(x)為減函數(shù),所以g(x2)<g(x1),即f(x2)-x2<f(x1)-x1.
所以f(x2)-f(x1)<x2-x1.又因?yàn)閒′(x)>0,所以f(x)為增函數(shù).
所以0<f(x2)-f(x1)<x2-x1.所以|f(x1)-f(x2)|<|x1-x2|.11分
(3)本小題沒(méi)有統(tǒng)一的答案,滿足題設(shè)條件的函數(shù)有無(wú)窮多個(gè).
如f(x)=x+sinx.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
3 |
a-3 |
2 |
x | 2 1 |
x | 2 2 |
x | 3 1 |
x | 3 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x |
1+x |
1 |
10 |
1 |
9 |
1 |
2 |
19 |
2 |
19 |
2 |
1 |
2 |
1 |
9 |
1 |
10 |
1 |
x |
| ||
1+
|
x |
1+x |
1 |
1+x |
x |
1+x |
1+x |
1+x |
1 | ||
2x+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
1-x |
1 |
2 |
1 |
n |
2 |
n |
n-1 |
n |
lim |
n→∞ |
4Sn-9Sn |
4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x+1-a |
a-x |
1 |
2 |
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
1-x |
1 |
n |
2 |
n |
n-1 |
n |
1 |
a1 |
1 |
a2 |
1 |
an |
sinα | ||
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com