已知A,B,C是橢圓W:+y2=1上的三個點,O是坐標原點.
(1)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
科目:高中數學 來源: 題型:解答題
已知直線l1:4x-3y+6=0和直線l2:x=- (p>2).若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點M處的切線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,已知橢圓=1(a>b>0)的右焦點為F2(1,0),點A在橢圓上.
(1)求橢圓方程;
(2)點M(x0,y0)在圓x2+y2=b2上,點M在第一象限,過點M作圓x2+y2=b2的切線交橢圓于P、Q兩點,問||+||+||是否為定值?如果是,求出該定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為,左、右焦點分別為,點G在橢圓C上,且,的面積為3.
(1)求橢圓C的方程:
(2)設橢圓的左、右頂點為A,B,過的直線與橢圓交于不同的兩點M,N(不同于點A,B),探索直線AM,BN的交點能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為雙曲線的一個焦點,且兩條曲線都經過點.
(1)求這兩條曲線的標準方程;
(2)已知點在拋物線上,且它與雙曲線的左,右焦點構成的三角形的面積為4,求點 的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的兩個焦點F1,F2和上下兩個頂點B1,B2是一個邊長為2且∠F1B1F2為60°的菱形的四個頂點.
(1)求橢圓C的方程;
(2)過右焦點F2的斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點,A為橢圓的右頂點,直線AE,AF分別交直線x=3于點M,N,線段MN的中點為P,記直線PF2的斜率為k′,求證: k·k′為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動直線與橢圓交于、兩不同點,且△的面積=,其中為坐標原點.
(1)證明和均為定值;
(2)設線段的中點為,求的最大值;
(3)橢圓上是否存在點,使得?若存在,判斷△的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,拋物線E:y2=4x的焦點為F,準線l與x軸的交點為A.點C在拋物線E上,以C為圓心,|CO|為半徑作圓,設圓C與準線l交于不同的兩點M,N.
(1)若點C的縱坐標為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com