若圓的一條直徑的兩個(gè)端點(diǎn)分別是(-1,3)和(5,-5),則此圓的方程是( 。
A、x2+y2+4x+2y-20=0
B、x2+y2-4x-2y-20=0
C、x2+y2-4x+2y+20=0
D、x2+y2-4x+2y-20=0
考點(diǎn):圓的一般方程
專題:計(jì)算題,直線與圓
分析:由已知的兩點(diǎn)為直徑的兩端點(diǎn),可得連接兩點(diǎn)的線段的中點(diǎn)為圓心,連接兩點(diǎn)線段長(zhǎng)度的一半為圓的半徑,故由中點(diǎn)坐標(biāo)公式求出兩點(diǎn)的中點(diǎn),即為圓心坐標(biāo),利用兩點(diǎn)間的距離公式求出兩點(diǎn)間的距離,求出距離的一半即為圓的半徑,根據(jù)求出的圓心坐標(biāo)和半徑寫出圓的方程即可.
解答: 解:∵(-1,3)和(5,-5)為一條直徑的兩個(gè)端點(diǎn),
∴兩點(diǎn)的中點(diǎn)(2,-1)為圓的圓心,
又兩點(diǎn)間的距離d=
36+64
=10,
∴圓的半徑為5,
則所求圓的方程為(x-2)2+(y+1)2=25,即x2+y2-4x+y-20=0.
故選D
點(diǎn)評(píng):此題考查了圓的標(biāo)準(zhǔn)方程,涉及的知識(shí)有:中點(diǎn)坐標(biāo)公式,兩點(diǎn)間的距離公式,以及圓標(biāo)準(zhǔn)方程與一般式方程的轉(zhuǎn)化,其中根據(jù)題意求出圓心坐標(biāo)和圓的半徑是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在y軸上的橢圓
x2
10
+
y2
m
=1的長(zhǎng)軸長(zhǎng)為8,則m等于( 。
A、4B、8C、10D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x+1)與拋物線C:y2=4x相交于A、B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|FA|=2|FB|,則k=( 。
A、±
2
2
3
B、±
2
3
C、±
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
x2-4
(x<-2)
(1)求f(x)的反函數(shù)f-1(x);
(2)設(shè)a1=1,
1
an+1
=-f-1(an)(n∈N*)
,求an;
(3)若Sn=a12+a22+…+an2,bn=Sn+1-Sn,是否存在最小正整數(shù)m使得對(duì)任意n∈N*,都有bn
m
25
成立?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2sinA,cosA),
b
=(cosA,2
3
cosA),
a
b
=
3
,若A∈[0,
π
2
],則A=( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos(ωx+
π
3
)(x∈R,ω>0)的最小正周期為π,為了得到f(x)的圖象,只需將函數(shù)g(x)=sin(ωx+
π
3
)的圖象( 。
A、向左平移
π
2
個(gè)單位長(zhǎng)度
B、向右平移
π
2
個(gè)單位長(zhǎng)度
C、向左平移
π
4
個(gè)單位長(zhǎng)度
D、向右平移
π
4
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正六邊形ABCDEF中,
BA
+
CD
+
BC
=( 。
A、
0
B、
BE
C、
AD
D、
CF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文做)設(shè)
1
2015
<(
1
2015
)b<(
1
2015
)a<1
,那么(  )
A、aa<bb<ba
B、aa<bb<a
C、ab<ba<aa
D、ab<aa<ba

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x滿足
2x
x-1
≤1,命題q:x滿足(x+1)(x-1)≤0,則p是q的
 
條件(填“充分非必要”、“必要非充分”、“充要”或“非充分非必要”).

查看答案和解析>>

同步練習(xí)冊(cè)答案