13.學(xué)校為了了解高一新生男生得到體能狀況,從高一新生中抽取若干名男生進行鉛球測試,把所得數(shù)據(jù)(精確到0.1米)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(1)請將頻率分布直方圖補充完整;
(2)該校參加這次鉛球測試的男生有多少人?
(3)若成績在8.0米以上(含8.0米)的為合格,試求這次鉛球測試的成績的合格率.

分析 (1)由各小組頻率之和為1,能求出第6小組的頻率,這樣就可把直方圖補充完整.
(2)由6小組的頻數(shù)是7,頻率0.14,能求出該校參加這次鉛球測試的男數(shù).
(3)由圖可知:第4、5、6小組成績在8.0米以上,求出其頻率之和,從而得到這次鉛球測試的成績的合格率.

解答 解:(1)因為各小組頻率之和為1,
所以第6小組的頻率為:
1-(0.04+0.10+0.14+0.28+0.30)=0.14.
補充完整頻率分布直方圖,如下圖:
…(4分)
(2)設(shè)該校參加這次鉛球測試的男生有x人,
由(1)知:6小組的頻數(shù)是7,第6小組的頻率0.14,
∴$\frac{7}{x}=0.14$,解得x=50.
故該校參加這次鉛球測試的男生有50人.…(8分)
(3)由圖可知:第4、5、6小組成績在8.0米以上,
其頻率之和為:0.28+0.30+0.14=0.72,
∴這次鉛球測試的成績的合格率為72%.…(12分)

點評 本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;同時考查頻率、中位數(shù)、眾數(shù)的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若偶函數(shù)f(x)的定義域為[a-4,a],奇函數(shù)$g(x)=\frac{{{2^x}-2b}}{{{x^2}+1}}$,則ab的值為( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.sin20°sin50°-cos160°sin40°的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,則這個幾何體的體積為(  )
A.$\frac{82}{3}$B.26C.80D.$\frac{80}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,已知$cosA=\frac{3}{5},cosB=\frac{5}{13}$,AC=3,則AB=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a,b,c分別是角A,B,C的對邊,b=4且$\frac{cosB}{cosC}=\frac{4}{2a-c}$.
(1)求角B的大;
(2)求△ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)是C1D的中點,P是棱CC1所在直線上的動點.則下列三個命題:
(1)CD⊥PE           
(2)EF∥平面ABC1
(3)V${\;}_{P-{A}_{1}D{D}_{1}}$=V${\;}_{{D}_{1}-ADE}$
其中正確命題的個數(shù)有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知p:x≤-1,q:a≤x<a+2,若q是p的充分不必要條件,則實數(shù)a的取值范圍為(  )
A.(-∞,1]B.[3,+∞)C.(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.角α的頂點與直角坐標(biāo)系的原點重合,始邊與x軸的非負半軸重合,“角α的終邊在射線x+3y=0(x≥0)上”是“sin2α=-$\frac{3}{5}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案