(文科做)雙曲線
x2
a2
-
y2
b2
=1
的左焦點為F1,頂點為A1,A2,P是該雙曲線右支上任意一點,則分別以線段PF1,A1A2為直徑的兩圓一定是( 。
A.相交B.內(nèi)切C.外切D.相離
如圖,設(shè)以線段PF1,A1A2為直徑的兩圓的圓心坐標分別為B,O,半徑分別為R,r
在三角形PF1F2中,圓心距|OB|=
|PF2|
2
=
|PF1|-2a
2
=
|PF1|
2
-a
=R-r
∴分別以線段PF1,A1A2為直徑的兩圓一定是內(nèi)切
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線經(jīng)過點P(-3,2
7
)和點Q(-6
2
,7),求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對稱中心在原點,對稱軸為坐標軸的雙曲線的漸近線為y=±2x,則此雙曲線的離心率為(  )
A.
5
B.
5
2
C.
5
5
2
D.
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別求適合下列條件圓錐曲線的標準方程:
(1)焦點為F1(0,-1)、F2(0,1)且過點M(
3
2
,1)
橢圓;
(2)與雙曲線x2-
y2
2
=1
有相同的漸近線,且過點(2,2)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,某農(nóng)場在M處有一堆肥料沿道路MA或MB送到大田ABCD中去,已知|MA|=6,|MB|=8,且|AD|≤|BC|,∠AMB=90°,能否在大田中確定一條界線,使位于界線一側(cè)沿MB送肥料較近?若能,請建立適當坐標系求出這條界線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點(1,0)且離心率為
2
的雙曲線的方程為( 。
A.
x2
2
-y2=1
B.
x2
2
-
y2
3
=1
C.x2-
y2
3
=1
D.x2-y2=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線2x2-2y2=1的右焦點且方向向量為(1,
3
)
的直線L與拋物線y2=4x交于A、B兩點,則|AB|的值為(  )
A.
8
3
7
B.
16
3
C.
8
3
D.
16
3
7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的右焦點為F(3,0),且以直線x=1為右準線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點A(m,0)到雙曲線
x2
4
-y2=1
的實軸的一個端點的距離是A到雙曲線上的各個點的距離的最小值,則m的取值范圍是( 。
A.[-2,2]B.[-
5
,
5
]
C.[-
5
2
5
2
]
D.(-∞,-
3
2
]∪[
3
2
,+∞)

查看答案和解析>>

同步練習冊答案