【題目】已知橢圓的長軸長為4,過點的直線交橢圓于兩點, 中點連接并延長交橢圓于點記直線的斜率為分別為,.

(Ⅰ)求橢圓方程;

(Ⅱ)當為直角時,的面積.

【答案】(Ⅰ) (Ⅱ) .

【解析】試題分析:

Ⅰ)由已知,設直線,聯(lián)立橢圓方程可得, .

, 由題意結(jié)合韋達定理可得: , ,故,由,橢圓方程為: .

由題意結(jié)合()的結(jié)論可得,點, .

由直線垂直的條件可得,可解得..

試題解析:

Ⅰ)由已知,設直線,聯(lián)立橢圓方程消去可得:

,

,即.

, , ,由韋達定理可得: ,

中點,則 ,故,

,所以,

故橢圓方程為: .

Ⅱ)直線,聯(lián)立橢圓方程消去可得:

,點

.

為直角,∴,可解得.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:若關于的方程無實數(shù)根,則;命題:若關于的方程有兩個不相等的正實數(shù)根,則.

(1)寫出命題的否命題,并判斷命題的真假;

(2)判斷命題“”的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點為平面上一動點,到直線的距離為,.

)求點的軌跡的方程;

)不過原點的直線交于兩點,線段的中點為,直線與直線交點的縱坐標為1,求面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是(

A.計算數(shù)列{2n1}的前10項和
B.計算數(shù)列{2n1}的前9項和
C.計算數(shù)列{2n﹣1}的前10項和
D.計算數(shù)列{2n﹣1}的前9項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間x(單位:小時)與當天投籃命中率y之間的關系:

時間x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4

小李這5天的平均投籃命中率為    ;用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率為    .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:

(1)設兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率.

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關:

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).

P(K2≥k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若,對任意,不等式恒成立,求的最小值;

(2)當時,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案