如圖,在底面是正方形的四棱錐中,于點(diǎn),中點(diǎn),上一動(dòng)點(diǎn).

(1)求證:;
(1)確定點(diǎn)在線段上的位置,使//平面,并說明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積
⑴詳見解析;⑵當(dāng)中點(diǎn)時(shí),//平面;(3)三棱錐B-CDF的體積為.

試題分析:⑴證空間兩直線垂直的常用方法是通過線面垂直來證明,本題中,由于直線在平面內(nèi),所以考慮證明平面.⑵注意平面與平面相交于,而直線在平面內(nèi),故只需即可,而這又只需中點(diǎn)即可.(3)求三棱錐B-CDF的體積中轉(zhuǎn)化為求三棱錐F-BCD的體積,這樣底面面積與高都很易求得.
試題解析:⑴∵,四邊形是正方形,
其對(duì)角線、交于點(diǎn)
,.2分
平面,    3分
平面,
   4分

⑵當(dāng)中點(diǎn),即時(shí),/平面,      5分
理由如下:
連結(jié),由中點(diǎn),中點(diǎn),知      6分
平面,平面
//平面.                           8分
(3)三棱錐B-CDF的體積為.12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,,,D為AC的中點(diǎn),.

(1)求證:平面平面;
(2)如果三棱錐的體積為3,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為正三角形,且側(cè)面AA1C1C是邊長為2的正方形,E是的中點(diǎn),F在棱CC1上。

(1)當(dāng)CF時(shí),求多面體ABCFA1的體積;
(2)當(dāng)點(diǎn)F使得A1F+BF最小時(shí),判斷直線AE與A1F是否垂直,并證明的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,斜三棱柱中,側(cè)面底面ABC,底面ABC是邊長為2的等邊三角形,側(cè)面是菱形,,E、F分別是、AB的中點(diǎn).

求證:(1);
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為梯形,,求圖中陰影部分繞AB旋轉(zhuǎn)一周形成的幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知矩形ABCD的頂點(diǎn)都在半徑為5的球O的球面上,且AB=8,BC=2,則棱錐O-ABCD的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1,一個(gè)密閉圓柱體容器的底部鑲嵌了同底的圓錐實(shí)心裝飾塊,容器內(nèi)盛有升水.平放在地面,則水面正好過圓錐的頂點(diǎn),若將容器倒置如圖2,水面也恰過點(diǎn).以下命題正確的是(     ).
A.圓錐的高等于圓柱高的
B.圓錐的高等于圓柱高的
C.將容器一條母線貼地,水面也恰過點(diǎn)
D.將容器任意擺放,當(dāng)水面靜止時(shí)都過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若將邊長為的正方形繞其一條邊所在直線旋轉(zhuǎn)一周,則所形成圓柱的體積等于         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四棱錐中,底面是邊長為的菱形,,側(cè)棱底面,,的中點(diǎn),則四面體的體積為          .

查看答案和解析>>

同步練習(xí)冊答案