【題目】已知關于的方程有兩個不同的實數(shù)根、.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)求證:.
【答案】(I);(II)證明見解析.
【解析】
試題分析:(1)方程有兩個不同的實數(shù)根、,等價于有兩個不等根,對函數(shù)求導,使得函數(shù)的圖象與有兩個不同的交點即可;(2) 證,只需證,需證,構造函數(shù)證明大于0.
解析:
(Ⅰ)∵,∴.令,
則 ,
令,解得,令,解得,
則函數(shù)在上單調遞增,在上單調遞減,
∴;
又當時,,當時,,
畫出函數(shù)的圖象.
要使函數(shù)的圖象與有兩個不同的交點,
則,即實數(shù)的取值范圍為.
(Ⅱ)由(Ⅰ)知,,不妨設,則,.
要證,只需證.
∵,且函數(shù)在上單調遞減,
∴只需證,又,∴只需證,
即證,即證對恒成立.
令,,則,
∵,∴,∴恒成立,
則函數(shù)在上單調遞減,∴.
綜上所述,.
科目:高中數(shù)學 來源: 題型:
【題目】
已知橢圓.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(I)求橢圓G的焦點坐標和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃投資A、B兩種金融產品,根據(jù)市場調查與預測,A產品的利潤與投資量的算術平方根成正比例,其關系如圖1,B產品的利潤與投資量成正比例,其關系如圖2(注:利潤與投資量的單位:萬元).
(1)分別將A、B兩產品的利潤表示為投資量的函數(shù)關系式;
(2)該公司已有10萬元資金,并全部投入A、B兩種產品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關于的不等式恒成立,求實數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180)[180,200)[200,220)[220,240)[240,260)[260,280)[280,300)分組的頻率分布直方圖如圖所示:
(1)求直方圖中的值;
(2)用分層抽樣的方法從[260,280)和[280,300)這兩組用戶中確定6人做隨訪,再從這6人中隨機抽取2人做問卷調查,則這2人來自不同組的概率是多少?
(3)求月平均用電量的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線C的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)設分別交于點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程1表示焦點在x軸上的雙曲線.
(1)命題q為真命題,求實數(shù)k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com