【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ=2.
(1)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(2)曲線C2上兩點(diǎn)與點(diǎn)B(ρ2,α),求△OAB面積的最大值.
【答案】(1)x2+(y﹣1)2=1(y≠0).(2).
【解析】
(1)設(shè)出的極坐標(biāo),然后由題意得出極坐標(biāo)方程,最后轉(zhuǎn)化為直角坐標(biāo)方程為;
(2)利用(1)中的結(jié)論,設(shè)出點(diǎn)的極坐標(biāo),然后結(jié)合面積公式得到面積的三角函數(shù),結(jié)合三角函數(shù)的性質(zhì)可得面積的最大值為.
解:(1)設(shè)P的極坐標(biāo)為(ρ,θ)(ρ>0),M的極坐標(biāo)為(ρ0,θ)(ρ0>0).
由題設(shè)知|PO|=ρ,.
由4,
得,
所以C2的極坐標(biāo)方程ρ=2sinθ(ρ>0),
因此C2的直角坐標(biāo)方程為x2+(y﹣1)2=1(y≠0).
(2)依題意:,|OB|=ρ2=2sinα.
于是△OAB面積:S.
當(dāng)時(shí),S取得最大值.
所以△OAB面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在年的自主招生考試成績(jī)中隨機(jī)抽取名學(xué)生的筆試成績(jī),按成績(jī)共分五組,得到如下的頻率分布表:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 |
(1)請(qǐng)寫(xiě)出頻率分布表中、、的值,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,請(qǐng)估計(jì)全體考生的平均成績(jī);
(2)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第、、組中用分層抽樣的方法抽取名考生進(jìn)入第二輪面試,求第、、組中每組各抽取多少名考生進(jìn)入第二輪的面試;
(3)在(2)的前提下,學(xué)校要求每個(gè)學(xué)生需從、兩個(gè)問(wèn)題中任選一題作為面試題目,求第三組和第五組中恰好有個(gè)學(xué)生選到問(wèn)題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1,F2為橢圓C:的左、右焦點(diǎn),橢圓C過(guò)點(diǎn)M,且MF2⊥F1F2.
(1)求橢圓C的方程;
(2)經(jīng)過(guò)點(diǎn)P(2,0)的直線交橢圓C于A,B兩點(diǎn),若存在點(diǎn)Q(m,0),使得|QA|=|QB|.
①求實(shí)數(shù)m的取值范圍:
②若線段F1A的垂直平分線過(guò)點(diǎn)Q,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)大力發(fā)展新能源汽車工業(yè),新能源汽車(含電動(dòng)汽車)銷量已躍居全球首位.某電動(dòng)汽車廠新開(kāi)發(fā)了一款電動(dòng)汽車.并對(duì)該電動(dòng)汽車的電池使用情況進(jìn)行了測(cè)試,其中剩余電量y與行駛時(shí)問(wèn) (單位:小時(shí))的測(cè)試數(shù)據(jù)如下表:
(1)根據(jù)電池放電的特點(diǎn),剩余電量y與行駛時(shí)間之間滿足經(jīng)驗(yàn)關(guān)系式:,通過(guò)散點(diǎn)圖可以發(fā)現(xiàn)y與之間具有相關(guān)性.設(shè),利用表格中的前8組數(shù)據(jù)求相關(guān)系數(shù)r,并判斷是否有99%的把握認(rèn)為與之間具有線性相關(guān)關(guān)系;(當(dāng)相關(guān)系數(shù)r滿足時(shí),則認(rèn)為有99%的把握認(rèn)為兩個(gè)變量具有線性相關(guān)關(guān)系)
(2)利用與的相關(guān)性及表格中前8組數(shù)據(jù)求出與之間的回歸方程;(結(jié)果保留兩位小數(shù))
(3)如果剩余電量不足0.8,電池就需要充電.從表格中的10組數(shù)據(jù)中隨機(jī)選出8組,設(shè)X表示需要充電的數(shù)據(jù)組數(shù),求X的分布列及數(shù)學(xué)期望.
附:相關(guān)數(shù)據(jù):.
表格中前8組數(shù)據(jù)的一些相關(guān)量:,,
相關(guān)公式:對(duì)于樣本,其回歸直線的斜率和戧距的最小二乘估計(jì)公式分別為:,
相關(guān)系數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=n2+pn,且a4,a7,a12成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,其中,是自然對(duì)數(shù)的底數(shù).
(1)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;
(2)若,,函數(shù)與函數(shù)的圖象交于,,且線段的中點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校李老師本學(xué)期任高一A班、B班兩個(gè)班數(shù)學(xué)課教學(xué),兩個(gè)班都是50個(gè)學(xué)生,下圖反映的是兩個(gè)班在本學(xué)期5次數(shù)學(xué)檢測(cè)中的班級(jí)平均分對(duì)比,根據(jù)圖表信息,下列不正確的結(jié)論是( )
A. A班的數(shù)學(xué)成績(jī)平均水平好于B班
B. B班的數(shù)學(xué)成績(jī)沒(méi)有A班穩(wěn)定
C. 下次B班的數(shù)學(xué)平均分高于A班
D. 在第一次考試中,A、B兩個(gè)班總平均分為78分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(I)若,求函數(shù)的極值和單調(diào)區(qū)間;
(II)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)解不等式: ;
(Ⅱ)當(dāng)時(shí),函數(shù)的圖象與軸圍成一個(gè)三角形,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com