【題目】有限集S中的元素個(gè)數(shù)記作,設(shè)A、B是有限集合,給出下列命題:
(1)的充分不必要條件是;
(2)的必要不充分條件是;
(3)的充要條件是
其中假命題是(寫題號)________________.
【答案】(1)(3)
【解析】
(1)分別判斷充分性與必要性證明即可.
(2)根據(jù)元素與集合的關(guān)系以及充分與必要條件的定義判斷即可.
(3)根據(jù)集合相等的定義判斷即可.
(1)當(dāng)時(shí),即為集合的元素個(gè)數(shù)之和,即為.
又當(dāng)時(shí),中的元素個(gè)數(shù)和等于中的元素個(gè)數(shù),故.
故是的充要條件.故(1)錯(cuò)誤.
(2)當(dāng)時(shí),中的元素個(gè)數(shù)小于等于中的元素個(gè)數(shù),故,
但當(dāng)時(shí)也可能有不屬于的元素.
故是的充分不必要條件,即的必要不充分條件是.
故(2)正確.
(3)當(dāng)意為中的元素個(gè)數(shù)相等,并不一定有.故(3)錯(cuò)誤.
故答案為:(1)(3)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某面包推出一款新面包,每個(gè)面包的成本價(jià)為4元,售價(jià)為10元,該款面包當(dāng)天只出一爐(一爐至少15個(gè),至多30個(gè)),當(dāng)天如果沒有售完,剩余的面包以每個(gè)2元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個(gè)),整理得下表:
(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為24,記當(dāng)日這款新面包獲得的總利潤為(單位:元).
(。┤羧招枨罅繛15個(gè),求;
(ⅱ)求的分布列及其數(shù)學(xué)期望.
相關(guān)公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知被直線分成面積相等的四部分,且截軸所得線段的長為2.
(1)求的方程;
(2)若存在過點(diǎn)的直線與相交于兩點(diǎn),且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(為常數(shù))
(1)若
①求函數(shù)在區(qū)間上的最大值及最小值。
②若過點(diǎn)可作函數(shù)的三條不同的切線,求實(shí)數(shù)的取值范圍。
(2)當(dāng)時(shí),不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點(diǎn).
(I)證明:AM⊥PM ;
(II)求二面角P-AM-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于
D. 由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)若有三個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com