【題目】已知函數(shù)f(x)=(2-a)lnx++2ax.

(1)當a<0時,討論f(x)的單調性;

(2)若對任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln 3)a-2ln 3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

【答案】(1)見解析(2) (-∞,- ].

【解析】試題分析:(1)對原函數(shù)求導,f′(x),分a=-2,-2<a<0,a<2,三種情況討論導函數(shù)的正負,得原函數(shù)的單調性;(2)根據(jù)第一問知道當a(3,-2)時,函數(shù)f(x)在區(qū)間[1,3]上單調遞減,故得到f(x)maxf(1)12af(x)minf(3)(2a)ln 36a,問題等價于am>4a,m<4m≤(4)min。

解析:

(1)求導可得f′(x)=+2a=,

令f′(x)=0,得x1,x2=-

當a=-2時,f′(x)≤0,函數(shù)f(x)在定義域(0,+∞)內單調遞減;

當-2<a<0時,在區(qū)間(0, ),(-,+∞)上f′(x)<0,f(x)單調遞減,在區(qū)間(,- )上f′(x)>0,f(x)單調遞增;

當a<-2時,在區(qū)間(0,- ),(,+∞)上f′(x)<0,f(x)單調遞減,在區(qū)間(-, )上f′(x)>0,f(x)單調遞增.

(2)由(1)知當a∈(-3,-2)時,函數(shù)f(x)在區(qū)間[1,3]上單調遞減,

所以當x∈[1,3]時,f(x)max=f(1)=1+2a,f(x)min=f(3)=(2-a)ln 3++6a.

問題等價于:對任意的a∈(-3,-2),恒有(m+ln 3)a-2ln 3>1+2a-(2-a)ln 3--6a成立,即am>-4a,

因為a<0,所以m<-4,

因為a∈(-3,-2),

所以只需m≤(-4)min

所以實數(shù)m的取值范圍為(-∞,- ].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, , , .

(Ⅰ)證明:

(Ⅱ)若,在棱上是否存在點,使得二面角的大小為,若存在,求的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個學校高三年級分別有1100人,1000人,為了了解兩個學校全體高三年級學生在該地區(qū)二?荚嚨臄(shù)學成績清況,采用分層抽樣方法從兩個學校一共抽取了105名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:

甲校:

乙校:

(1)計算的值;

(2)若規(guī)定考試成績在內為優(yōu)秀,請根據(jù)樣本估計乙校數(shù)學成績的優(yōu)秀率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認為兩個學校的數(shù)學成績有差異.

附: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),等腰直角三角形ABC的底邊AB4,D在線段AC,DEABE,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2))

(1)求證PBDE;

(2)PEBEPE1,求點B到平面PEC的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為R的函數(shù)f(x),若f(x)在(-∞,0)和(0,+∞)上均有零點,則稱函數(shù)f(x)為“含界點函數(shù)”,則下列四個函數(shù)中,不是“含界點函數(shù)”的是(  )

A. f(x)=x2bx-1(b∈R) B. f(x)=2-|x-1|

C. f(x)=2xx2 D. f(x)=x-sin x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)yf(x)的導函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)yf(x)在區(qū)間內單調遞增;

②函數(shù)yf(x)在區(qū)間內單調遞減;

③函數(shù)yf(x)在區(qū)間(4,5)內單調遞增;

④當x2時,函數(shù)yf(x)有極小值;

⑤當x時,函數(shù)yf(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) .

(1)若函數(shù)上單調遞增,求的取值范圍;

(2)設函數(shù),若對任意的,都有 ,求的取值范圍;

(3)設,點是函數(shù)的一個交點,且函數(shù)在點處的切線互相垂直,求證:存在唯一的滿足題意,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓上一點關于原點的對稱點為 為其右焦點,若,設,且,則該橢圓離心率的最大值為(

A. B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x) (其中e是自然對數(shù)的底數(shù),常數(shù)a0)

(1)a1求曲線在(0,f(0))處的切線方程;

(2)若存在實數(shù)x(a,2],使得不等式f(x)e2成立,a的取值范圍.

查看答案和解析>>

同步練習冊答案